These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 12509487)

  • 1. Amplification of exocytosis by Ca2+-induced Ca2+ release in INS-1 pancreatic beta cells.
    Kang G; Holz GG
    J Physiol; 2003 Jan; 546(Pt 1):175-89. PubMed ID: 12509487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca(2+)-induced Ca(2+) release via inositol 1,4,5-trisphosphate receptors is amplified by protein kinase A and triggers exocytosis in pancreatic beta-cells.
    Dyachok O; Gylfe E
    J Biol Chem; 2004 Oct; 279(44):45455-61. PubMed ID: 15316011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37).
    Holz GG; Leech CA; Heller RS; Castonguay M; Habener JF
    J Biol Chem; 1999 May; 274(20):14147-56. PubMed ID: 10318832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells.
    Kang G; Chepurny OG; Holz GG
    J Physiol; 2001 Oct; 536(Pt 2):375-85. PubMed ID: 11600673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights concerning the glucose-dependent insulin secretagogue action of glucagon-like peptide-1 in pancreatic beta-cells.
    Holz GG
    Horm Metab Res; 2004; 36(11-12):787-94. PubMed ID: 15655710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly Ca2+-sensitive pool of granules is regulated by glucose and protein kinases in insulin-secreting INS-1 cells.
    Yang Y; Gillis KD
    J Gen Physiol; 2004 Dec; 124(6):641-51. PubMed ID: 15572344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic beta cells.
    Kang G; Chepurny OG; Rindler MJ; Collis L; Chepurny Z; Li WH; Harbeck M; Roe MW; Holz GG
    J Physiol; 2005 Jul; 566(Pt 1):173-88. PubMed ID: 15860526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exocytosis elicited by action potentials and voltage-clamp calcium currents in individual mouse pancreatic B-cells.
    Ammälä C; Eliasson L; Bokvist K; Larsson O; Ashcroft FM; Rorsman P
    J Physiol; 1993 Dec; 472():665-88. PubMed ID: 8145165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Ca(2+)-induced Ca(2+) release from intracellular stores contributes to catecholamine hypersecretion in adrenal chromaffin cells from spontaneously hypertensive rats.
    Segura-Chama P; López-Bistrain P; Pérez-Armendáriz EM; Jiménez-Pérez N; Millán-Aldaco D; Hernández-Cruz A
    Pflugers Arch; 2015 Nov; 467(11):2307-23. PubMed ID: 25791627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A caffeine/ryanodine-sensitive Ca2+ pool is involved in triggering spontaneous variations of Ca2+ in Jurkat T lymphocytes by a Ca(2+)-induced Ca2+ release (CICR) mechanism.
    Ricard I; Martel J; Dupuis L; Dupuis G; Payet MD
    Cell Signal; 1997 Feb; 9(2):197-206. PubMed ID: 9113420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple modes of calcium-induced calcium release in sympathetic neurons I: attenuation of endoplasmic reticulum Ca2+ accumulation at low [Ca2+](i) during weak depolarization.
    Albrecht MA; Colegrove SL; Hongpaisan J; Pivovarova NB; Andrews SB; Friel DD
    J Gen Physiol; 2001 Jul; 118(1):83-100. PubMed ID: 11429446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atypical Ca2+-induced Ca2+ release from a sarco-endoplasmic reticulum Ca2+-ATPase 3-dependent Ca2+ pool in mouse pancreatic beta-cells.
    Beauvois MC; Arredouani A; Jonas JC; Rolland JF; Schuit F; Henquin JC; Gilon P
    J Physiol; 2004 Aug; 559(Pt 1):141-56. PubMed ID: 15218077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+-induced Ca2+ release by activation of inositol 1,4,5-trisphosphate receptors in primary pancreatic beta-cells.
    Dyachok O; Tufveson G; Gylfe E
    Cell Calcium; 2004 Jul; 36(1):1-9. PubMed ID: 15126051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacitance measurements of exocytosis in mouse pancreatic alpha-, beta- and delta-cells within intact islets of Langerhans.
    Göpel S; Zhang Q; Eliasson L; Ma XS; Galvanovskis J; Kanno T; Salehi A; Rorsman P
    J Physiol; 2004 May; 556(Pt 3):711-26. PubMed ID: 14966302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium fluoride stimulates exocytosis at a late site of calcium interaction in stimulus-secretion coupling: studies with the RINm5F beta cell line.
    Komatsu M; McDermott AM; Sharp GW
    Mol Pharmacol; 1995 Mar; 47(3):496-508. PubMed ID: 7700248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones.
    Garaschuk O; Yaari Y; Konnerth A
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):13-30. PubMed ID: 9234194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term potentiation of transmitter exocytosis expressed by Ca2+-induced Ca2+ release from thapsigargin-sensitive Ca2+ stores in preganglionic nerve terminals.
    Cong YL; Takeuchi S; Tokuno H; Kuba K
    Eur J Neurosci; 2004 Jul; 20(2):419-26. PubMed ID: 15233751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of secretory granule recruitment and exocytosis at rat neurohypophysial nerve endings.
    Giovannucci DR; Stuenkel EL
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):735-51. PubMed ID: 9051585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exocytosis coupled to mobilization of intracellular calcium by muscarine and caffeine in rat chromaffin cells.
    Guo X; Przywara DA; Wakade TD; Wakade AR
    J Neurochem; 1996 Jul; 67(1):155-62. PubMed ID: 8666986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors.
    Gromada J; Ding WG; Barg S; Renström E; Rorsman P
    Pflugers Arch; 1997 Sep; 434(5):515-24. PubMed ID: 9242714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.