These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 12509493)

  • 1. Organisation of sensitisation of hind limb withdrawal reflexes from acute noxious stimuli in the rabbit.
    Harris J; Clarke RW
    J Physiol; 2003 Jan; 546(Pt 1):251-65. PubMed ID: 12509493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in opioidergic inhibition of spinal reflexes and Fos expression evoked by mechanical and chemical noxious stimuli in the decerebrated rabbit.
    Bhandari RN; Ogilvie J; Clarke RW
    Neuroscience; 1999 Apr; 90(1):177-89. PubMed ID: 10188944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of spinal α2 -adrenoceptors in prolonged modulation of hind limb withdrawal reflexes following acute noxious stimulation in the anaesthetized rabbit.
    Harris J
    Eur J Neurosci; 2016 Mar; 43(6):834-45. PubMed ID: 26804327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate and tachykinin receptors in central sensitization of withdrawal reflexes in the decerebrated rabbit.
    Harris J; Joules C; Stanley C; Thomas P; Clarke RW
    Exp Physiol; 2004 Mar; 89(2):187-98. PubMed ID: 15123548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spatial organization of central sensitization of hind limb flexor reflexes in the decerebrated, spinalized rabbit.
    Clarke RW; Harris J
    Eur J Pain; 2001; 5(2):175-85. PubMed ID: 11465983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive changes in withdrawal reflexes after noxious stimulation at the heel and the toes in the decerebrated rabbit.
    Clarke RW; Wych BE; Harris J
    Neurosci Lett; 2001 May; 304(1-2):120-2. PubMed ID: 11335069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential modulation of withdrawal reflexes by a cannabinoid in the rabbit.
    Jenkins S; Worthington M; Harris J; Clarke RW
    Brain Res; 2004 Jun; 1012(1-2):146-53. PubMed ID: 15158171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opioidergic inhibition of flexor and extensor reflexes in the rabbit.
    Clarke RW; Galloway FJ; Harris J; Taylor JS; Ford TW
    J Physiol; 1992 Apr; 449():493-501. PubMed ID: 1522521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific, inflammation-induced adaptations in withdrawal reflex pathways in the anesthetized rabbit.
    Harris J; Clarke RW
    Brain Res; 2007 Feb; 1131(1):106-11. PubMed ID: 17169342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NK1-tachykinin receptors and prolonged, stimulus-evoked alterations in the excitability of withdrawal reflexes in the decerebrated and spinalized rabbit.
    Houghton AK; Clarke RW
    Neuroscience; 1995 Jun; 66(3):673-83. PubMed ID: 7644030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tonic adrenergic and serotonergic inhibition of a withdrawal reflex in rabbits subjected to different levels of surgical preparation.
    Ogilvie J; Simpson DA; Clarke RW
    Neuroscience; 1999; 89(4):1247-58. PubMed ID: 10362312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between cutaneous afferent inputs to a withdrawal reflex in the decerebrated rabbit and their control by descending and segmental systems.
    Clarke RW; Eves S; Harris J; Peachey JE; Stuart E
    Neuroscience; 2002; 112(3):555-71. PubMed ID: 12074898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Withdrawal reflex organisation to electrical stimulation of the dorsal foot in humans.
    Sonnenborg FA; Andersen OK; Arendt-Nielsen L; Treede RD
    Exp Brain Res; 2001 Feb; 136(3):303-12. PubMed ID: 11243472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusimotor reflexes in triceps surae muscle elicited by extension of the contralateral hind limb in the cat.
    Appelberg B; Hulliger M; Johansson H; Sojka P
    J Physiol; 1984 Oct; 355():99-117. PubMed ID: 6238161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location specificity of plantar cutaneous reflexes involving lower limb muscles in humans.
    Nakajima T; Sakamoto M; Tazoe T; Endoh T; Komiyama T
    Exp Brain Res; 2006 Nov; 175(3):514-25. PubMed ID: 16847613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cutaneous inhibitory receptive fields of withdrawal reflexes in the decerebrate spinal rat.
    Weng HR; Schouenborg J
    J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):253-65. PubMed ID: 8735710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal nociceptive reflexes are sensitized in the monosodium iodoacetate model of osteoarthritis pain in the rat.
    Kelly S; Dobson KL; Harris J
    Osteoarthritis Cartilage; 2013 Sep; 21(9):1327-35. PubMed ID: 23973147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflexes in sympathetic vasoconstrictor neurones arising from urinary bladder afferents are not amplified early after inflammation in the anaesthetised cat.
    Häbler HJ; Jänig W
    Pain; 2003 Feb; 101(3):251-257. PubMed ID: 12583867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cutaneous contribution to the hamstring flexor reflex in the rat: an electrophysiological and anatomical study.
    Woolf CJ; Swett JE
    Brain Res; 1984 Jun; 303(2):299-312. PubMed ID: 6744026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.