These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 12510389)
1. [Structures of peptides related to the inactivation gate on sodium channels]. Miyamoto K Yakugaku Zasshi; 2002 Dec; 122(12):1123-31. PubMed ID: 12510389 [TBL] [Abstract][Full Text] [Related]
2. Solution structures of the cytoplasmic linkers between segments S4 and S5 (S4-S5) in domains III and IV of human brain sodium channels in SDS micelles. Miyamoto K; Nakagawa T; Kuroda Y J Pept Res; 2001 Sep; 58(3):193-203. PubMed ID: 11576325 [TBL] [Abstract][Full Text] [Related]
3. Solution structure of the cytoplasmic linker between domain III-S6 and domain IV-S1 (III-IV linker) of the rat brain sodium channel in SDS micelles. Miyamoto K; Nakagawa T; Kuroda Y Biopolymers; 2001 Oct; 59(5):380-93. PubMed ID: 11514941 [TBL] [Abstract][Full Text] [Related]
4. Solution structures of the inactivation gate particle peptides of rat brain type-IIA and human heart sodium channels in SDS micelles. Miyamoto K; Kanaori K; Nakagawa T; Kuroda Y J Pept Res; 2001 Mar; 57(3):203-14. PubMed ID: 11298921 [TBL] [Abstract][Full Text] [Related]
5. A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation. McPhee JC; Ragsdale DS; Scheuer T; Catterall WA J Biol Chem; 1998 Jan; 273(2):1121-9. PubMed ID: 9422778 [TBL] [Abstract][Full Text] [Related]
6. Structural study of the sodium channel inactivation gate peptide including an isoleucine-phenylalanine-methionine motif and its analogous peptide (phenylalanine/glutamine) in trifluoroethanol solutions and SDS micelles. Kuroda Y; Miyamoto K; Matsumoto M; Maeda Y; Kanaori K; Otaka A; Fujii N; Nakagawa T J Pept Res; 2000 Sep; 56(3):172-84. PubMed ID: 11007274 [TBL] [Abstract][Full Text] [Related]
7. 1H-NMR and circular dichroism spectroscopic studies on changes in secondary structures of the sodium channel inactivation gate peptides as caused by the pentapeptide KIFMK. Kuroda Y; Maeda Y; Miyamoto K; Tanaka K; Kanaori K; Otaka A; Fujii N; Nakagawa T Biophys J; 1999 Sep; 77(3):1363-73. PubMed ID: 10465748 [TBL] [Abstract][Full Text] [Related]
8. Block of brain sodium channels by peptide mimetics of the isoleucine, phenylalanine, and methionine (IFM) motif from the inactivation gate. Eaholtz G; Colvin A; Leonard D; Taylor C; Catterall WA J Gen Physiol; 1999 Feb; 113(2):279-94. PubMed ID: 9925825 [TBL] [Abstract][Full Text] [Related]
9. Helix-stabilizing effects of the pentapeptide KIFMK and its related peptides on the sodium channel inactivation gate peptides. Maeda Y; Nakagawa T; Kuroda Y J Pept Res; 2001 Nov; 58(5):413-23. PubMed ID: 11892850 [TBL] [Abstract][Full Text] [Related]
10. A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. McPhee JC; Ragsdale DS; Scheuer T; Catterall WA J Biol Chem; 1995 May; 270(20):12025-34. PubMed ID: 7744852 [TBL] [Abstract][Full Text] [Related]
11. Molecular analysis of the putative inactivation particle in the inactivation gate of brain type IIA Na+ channels. Kellenberger S; West JW; Scheuer T; Catterall WA J Gen Physiol; 1997 May; 109(5):589-605. PubMed ID: 9154906 [TBL] [Abstract][Full Text] [Related]
12. Regulation and drug modulation of a voltage-gated sodium channel: Pivotal role of the S4-S5 linker in activation and slow inactivation. Xiao J; Bondarenko V; Wang Y; Suma A; Wells M; Chen Q; Tillman T; Luo Y; Yu B; Dailey WP; Eckenhoff R; Tang P; Carnevale V; Klein ML; Xu Y Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34260401 [TBL] [Abstract][Full Text] [Related]
13. The conformation and movement of Na channel inactivation gate peptide in linker between domain III and IV during inactivation by NMR spectroscopy and molecular modeling study. Lou BS; Lin TH; Lo CZ J Pept Res; 2004 Mar; 63(3):313-23. PubMed ID: 15049844 [TBL] [Abstract][Full Text] [Related]
14. Restoration of inactivation and block of open sodium channels by an inactivation gate peptide. Eaholtz G; Scheuer T; Catterall WA Neuron; 1994 May; 12(5):1041-8. PubMed ID: 8185942 [TBL] [Abstract][Full Text] [Related]
15. Locations of local anesthetic dibucaine in model membranes and the interaction between dibucaine and a Na+ channel inactivation gate peptide as studied by 2H- and 1H-NMR spectroscopies. Kuroda Y; Ogawa M; Nasu H; Terashima M; Kasahara M; Kiyama Y; Wakita M; Fujiwara Y; Fujii N; Nakagawa T Biophys J; 1996 Sep; 71(3):1191-207. PubMed ID: 8873993 [TBL] [Abstract][Full Text] [Related]
16. Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels. Sheets MF; Hanck DA J Physiol; 2007 Jul; 582(Pt 1):317-34. PubMed ID: 17510181 [TBL] [Abstract][Full Text] [Related]
17. Restoration of fast inactivation in an inactivation-defective human heart sodium channel by the cysteine modifying reagent benzyl-MTS: analysis of IFM-ICM mutation. Chahine M; DeschĂȘnes I; Trottier E; Chen LQ; Kallen RG Biochem Biophys Res Commun; 1997 Apr; 233(3):606-10. PubMed ID: 9168898 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanisms of gating and drug block of sodium channels. Catterall WA Novartis Found Symp; 2002; 241():206-18; discussion 218-32. PubMed ID: 11771647 [TBL] [Abstract][Full Text] [Related]
19. Cysteine scanning analysis of the IFM cluster in the inactivation gate of a human heart sodium channel. DeschĂȘnes I; Trottier E; Chahine M Cardiovasc Res; 1999 May; 42(2):521-9. PubMed ID: 10533587 [TBL] [Abstract][Full Text] [Related]
20. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Catterall WA Adv Neurol; 1999; 79():441-56. PubMed ID: 10514834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]