These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 12510750)
1. Sample preparation for quantitation of tritium by accelerator mass spectrometry. Chiarappa-Zucca ML; Dingley KH; Roberts ML; Velsko CA; Love AH Anal Chem; 2002 Dec; 74(24):6285-90. PubMed ID: 12510750 [TBL] [Abstract][Full Text] [Related]
2. Attomole detection of 3H in biological samples using accelerator mass spectrometry: application in low-dose, dual-isotope tracer studies in conjunction with 14C accelerator mass spectrometry. Dingley KH; Roberts ML; Velsko CA; Turteltaub KW Chem Res Toxicol; 1998 Oct; 11(10):1217-22. PubMed ID: 9778319 [TBL] [Abstract][Full Text] [Related]
3. Accelerator mass spectrometry for biomedical research. Brown K; Dingley KH; Turteltaub KW Methods Enzymol; 2005; 402():423-43. PubMed ID: 16401518 [TBL] [Abstract][Full Text] [Related]
4. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom. Barker J; Garner RC Rapid Commun Mass Spectrom; 1999; 13(4):285-93. PubMed ID: 10097404 [TBL] [Abstract][Full Text] [Related]
5. Quantitating isotopic molecular labels with accelerator mass spectrometry. Vogel JS; Love AH Methods Enzymol; 2005; 402():402-22. PubMed ID: 16401517 [TBL] [Abstract][Full Text] [Related]
6. Measurement of beryllium in biological samples by accelerator mass spectrometry: applications for studying chronic beryllium disease. Chiarappa-Zucca ML; Finkel RC; Martinelli RE; McAninch JE; Nelson DO; Turteltaub KW Chem Res Toxicol; 2004 Dec; 17(12):1614-20. PubMed ID: 15606137 [TBL] [Abstract][Full Text] [Related]
7. Improving tritium exposure reconstructions using accelerator mass spectrometry. Love AH; Hunt JR; Vogel JS; Knezovich JP Anal Bioanal Chem; 2004 May; 379(2):198-203. PubMed ID: 14735274 [TBL] [Abstract][Full Text] [Related]
8. Accelerator mass spectrometry of small biological samples. Salehpour M; Forsgard N; Possnert G Rapid Commun Mass Spectrom; 2008 Dec; 22(23):3928-34. PubMed ID: 18980253 [TBL] [Abstract][Full Text] [Related]
9. Accelerator mass spectrometry. Hellborg R; Skog G Mass Spectrom Rev; 2008; 27(5):398-427. PubMed ID: 18470926 [TBL] [Abstract][Full Text] [Related]
10. Tritium in urine from members of the general public and occupationally exposed workers in Lund, Sweden, prior to operation of the European Spallation Source. Pédehontaa-Hiaa G; Holstein H; Mattsson S; Rääf CL; Stenström KE J Environ Radioact; 2020 Mar; 213():106141. PubMed ID: 31983450 [TBL] [Abstract][Full Text] [Related]
11. Accelerator mass spectrometry in pharmaceutical research and development--a new ultrasensitive analytical method for isotope measurement. Garner RC Curr Drug Metab; 2000 Sep; 1(2):205-13. PubMed ID: 11465084 [TBL] [Abstract][Full Text] [Related]
12. DNA isolation and sample preparation for quantification of adduct levels by accelerator mass spectrometry. Dingley KH; Ubick EA; Vogel JS; Haack KW Methods Mol Biol; 2005; 291():21-7. PubMed ID: 15502208 [TBL] [Abstract][Full Text] [Related]
13. A validation study comparing accelerator MS and liquid scintillation counting for analysis of 14C-labelled drugs in plasma, urine and faecal extracts. Garner RC; Barker J; Flavell C; Garner JV; Whattam M; Young GC; Cussans N; Jezequel S; Leong D J Pharm Biomed Anal; 2000 Dec; 24(2):197-209. PubMed ID: 11130199 [TBL] [Abstract][Full Text] [Related]
14. A combustion method for the simultaneous determination of 3H, 14C, and 35S in triply labeled organic samples by liquid scintillation counting. Saito K; Miyatake H; Kurihara N Anal Biochem; 1990 Nov; 190(2):276-80. PubMed ID: 2127159 [TBL] [Abstract][Full Text] [Related]
15. Ultraviolet photolysis of urine for suppression of color quenching prior to liquid scintillation counting of tritium. Watanabe Y; Kuwabara J Anal Bioanal Chem; 2006 Jan; 384(2):547-50. PubMed ID: 16341510 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of accelerator mass spectrometry in a human mass balance and pharmacokinetic study-experience with 14C-labeled (R)-6-[amino(4- chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1- methyl-2(1H)-quinolinone (R115777), a farnesyl transferase inhibitor. Garner RC; Goris I; Laenen AA; Vanhoutte E; Meuldermans W; Gregory S; Garner JV; Leong D; Whattam M; Calam A; Snel CA Drug Metab Dispos; 2002 Jul; 30(7):823-30. PubMed ID: 12065441 [TBL] [Abstract][Full Text] [Related]
17. (3)He mass spectrometry for very low-level measurement of organic tritium in environmental samples. Jean-Baptiste P; Fourré E; Dapoigny A; Baumier D; Baglan N; Alanic G J Environ Radioact; 2010 Feb; 101(2):185-90. PubMed ID: 19906472 [TBL] [Abstract][Full Text] [Related]
18. Ratio of tritiated water and hydrogen generated in mercury through a nuclear reaction. Manabe K; Yokoyama S Appl Radiat Isot; 2008 Feb; 66(2):122-5. PubMed ID: 17855101 [TBL] [Abstract][Full Text] [Related]
19. Use of tritium accelerator mass spectrometry for tree ring analysis. Love AH; Hunt JR; Roberts ML; Southon JR; Chiarapp-Zucca ML; Dingley KH Environ Sci Technol; 2002 Jul; 36(13):2848-52. PubMed ID: 12144257 [TBL] [Abstract][Full Text] [Related]
20. Neuroscience and accelerator mass spectrometry. Palmblad M; Buchholz BA; Hillegonds DJ; Vogel JS J Mass Spectrom; 2005 Feb; 40(2):154-9. PubMed ID: 15706618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]