These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 125108)
1. Plasmic degradation of human fibrinogen. IV. Identification of subunit chain remnants in fragment Y. Furlan M; Seelich T; Beck EA Biochim Biophys Acta; 1975 Jul; 400(1):112-20. PubMed ID: 125108 [TBL] [Abstract][Full Text] [Related]
2. A re-examination of the cleavage of fibrinogen and fibrin by plasmin. Ferguson EW; Fretto LJ; McKee PA J Biol Chem; 1975 Sep; 250(18):7210-8. PubMed ID: 126232 [TBL] [Abstract][Full Text] [Related]
3. Plasmic degradation of human fibrinogen. III. Molecular model of the plasmin-resistant disulfide knot in monomeric fragment D. Furlan M; Kemp G; Beck EA Biochim Biophys Acta; 1975 Jul; 400(1):95-111. PubMed ID: 125109 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the physicochemical properties of fragment D derivatives of fibrinogen and fragment D-D of cross-linked fibrin. Marder VJ; Budzynski AZ; Barlow GH Biochim Biophys Acta; 1976 Mar; 427(1):1-14. PubMed ID: 130927 [TBL] [Abstract][Full Text] [Related]
5. Plasmic degradation of fibrinogen Paris I. Budzynski AZ; Marder VJ J Lab Clin Med; 1976 Nov; 88(5):817-25. PubMed ID: 978044 [TBL] [Abstract][Full Text] [Related]
6. Localization of the alpha-chain cross-link acceptor sites of human fibrin. Fretto LJ; Ferguson EW; Steinman HM; McKee PA J Biol Chem; 1978 Apr; 253(7):2184-95. PubMed ID: 632262 [TBL] [Abstract][Full Text] [Related]
7. Characterization of an apparently lower molecular weight gamma-chain variant in fibrinogen Kyoto I. The replacement of gamma-asparagine 308 by lysine which causes accelerated cleavage of fragment D1 by plasmin and the generation of a new plasmin cleavage site. Yoshida N; Terukina S; Okuma M; Moroi M; Aoki N; Matsuda M J Biol Chem; 1988 Sep; 263(27):13848-56. PubMed ID: 2971046 [TBL] [Abstract][Full Text] [Related]
8. Plasmic degradation of bovine fibrinogen and non-crosslinked fibrins in solution and in gel form. Inoue N; Moroi M; Yamasaki M Biochim Biophys Acta; 1975 Aug; 400(2):322-33. PubMed ID: 240417 [TBL] [Abstract][Full Text] [Related]
9. Amino acid sequence studies on plasmin-derived fragments of human fibrinogen: amino-terminal sequences of intermediate and terminal fragments. Takagi T; Doolittle RF Biochemistry; 1975 Mar; 14(5):940-6. PubMed ID: 123758 [TBL] [Abstract][Full Text] [Related]
10. Electron microscopic studies of plasmic degradation products of fibrinogen. Implications for the disulfide structure of fibrinogen. Tranqui-Pouit L; Marder VJ; Suscillon M; Budzynski AZ; Hudry-Clergeon G Biochim Biophys Acta; 1975 Aug; 400(2):189-99. PubMed ID: 126081 [TBL] [Abstract][Full Text] [Related]
11. Primary structure of human fibrinogen and fibrin. Isolation and partial characterization of chains of fragment D. Collen D; Kudryk B; Hessel B; Blombäck B J Biol Chem; 1975 Aug; 250(15):5808-17. PubMed ID: 125279 [TBL] [Abstract][Full Text] [Related]
12. Characterization of fragment E from fibrinogen and cross-linked fibrin. Slade CL; Pizzo SV; Taylor LM; Steinman HM; McKee PA J Biol Chem; 1976 Mar; 251(6):1591-6. PubMed ID: 815259 [TBL] [Abstract][Full Text] [Related]
13. Demonstration of a large molecular weight variant of the gamma chain of normal human plasma fibrinogen. Francis CW; Marder VJ; Martin SE J Biol Chem; 1980 Jun; 255(12):5599-604. PubMed ID: 6445903 [TBL] [Abstract][Full Text] [Related]
14. Structure of plasmic degradation products of human fibrinogen. Fibrinopeptide and polypeptide chain analysis. Budzynski AZ; Marder VJ; Shainoff JR J Biol Chem; 1974 Apr; 249(7):2294-302. PubMed ID: 4131967 [No Abstract] [Full Text] [Related]
15. Thrombin binding to the A alpha-, B beta-, and gamma-chains of fibrinogen and to their remnants contained in fragment E. Kaczmarek E; McDonagh J J Biol Chem; 1988 Sep; 263(27):13896-900. PubMed ID: 3417681 [TBL] [Abstract][Full Text] [Related]
16. Calcium modulates plasmin cleavage of the fibrinogen D fragment gamma chain N-terminus: mapping of monoclonal antibody J88B to a plasmin sensitive domain of the gamma chain. Odrljin TM; Rybarczyk BJ; Francis CW; Lawrence SO; Hamaguchi M; Simpson-Haidaris PJ Biochim Biophys Acta; 1996 Nov; 1298(1):69-77. PubMed ID: 8948490 [TBL] [Abstract][Full Text] [Related]
17. Studies on the structural abnormality of fibrinogen Paris I. Mosesson MW; Amrani DL; Ménaché D J Clin Invest; 1976 Mar; 57(3):782-90. PubMed ID: 1249208 [TBL] [Abstract][Full Text] [Related]
18. Characterization of peptides cleaved by plasmin from the C-terminal polymerization domain of human fibrinogen. Southan C; Thompson E; Panico M; Etienne T; Morris HR; Lane DA J Biol Chem; 1985 Oct; 260(24):13095-101. PubMed ID: 2932434 [TBL] [Abstract][Full Text] [Related]
19. Fibrinogen St. Gallen I (gamma 292 Gly--> Val): evidence for structural alterations causing defective polymerization and fibrinogenolysis. Stucki B; Schmutz P; Schmid L; Haeberli A; Lämmle B; Furlan M Thromb Haemost; 1999 Feb; 81(2):268-74. PubMed ID: 10064005 [TBL] [Abstract][Full Text] [Related]
20. Structural and chromatographic heterogeneity of normal plasma fibrinogen associated with the presence of three gamma-chain types with distinct molecular weights. Francis CW; Kraus DH; Marder VJ Biochim Biophys Acta; 1983 Apr; 744(2):155-64. PubMed ID: 6404305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]