These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 12510881)

  • 1. De novo ligand design with explicit water molecules: an application to bacterial neuraminidase.
    Mancera RL
    J Comput Aided Mol Des; 2002 Jul; 16(7):479-99. PubMed ID: 12510881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method for estimating the importance of hydrogen-bonding groups in the binding site of a protein.
    Kelly MD; Mancera RL
    J Comput Aided Mol Des; 2003 Jul; 17(7):401-14. PubMed ID: 14677637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors.
    García-Sosa AT; Mancera RL
    J Mol Model; 2006 Mar; 12(4):422-31. PubMed ID: 16374623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration in drug design. 2. Influence of local site surface shape on water binding.
    Poornima CS; Dean PM
    J Comput Aided Mol Des; 1995 Dec; 9(6):513-20. PubMed ID: 8789193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions.
    Poornima CS; Dean PM
    J Comput Aided Mol Des; 1995 Dec; 9(6):500-12. PubMed ID: 8789192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding of known drug-target interactions in the catalytic pocket of neuraminidase subtype N1.
    Malaisree M; Rungrotmongkol T; Decha P; Intharathep P; Aruksakunwong O; Hannongbua S
    Proteins; 2008 Jun; 71(4):1908-18. PubMed ID: 18175324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WaterScore: a novel method for distinguishing between bound and displaceable water molecules in the crystal structure of the binding site of protein-ligand complexes.
    García-Sosa AT; Mancera RL; Dean PM
    J Mol Model; 2003 Jun; 9(3):172-82. PubMed ID: 12756610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies.
    García-Sosa AT
    J Chem Inf Model; 2013 Jun; 53(6):1388-405. PubMed ID: 23662606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins.
    Poornima CS; Dean PM
    J Comput Aided Mol Des; 1995 Dec; 9(6):521-31. PubMed ID: 8789194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sensitivity of the results of molecular docking to induced fit effects: application to thrombin, thermolysin and neuraminidase.
    Murray CW; Baxter CA; Frenkel AD
    J Comput Aided Mol Des; 1999 Nov; 13(6):547-62. PubMed ID: 10584214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel aromatic inhibitors of influenza virus neuraminidase make selective interactions with conserved residues and water molecules in the active site.
    Finley JB; Atigadda VR; Duarte F; Zhao JJ; Brouillette WJ; Air GM; Luo M
    J Mol Biol; 1999 Nov; 293(5):1107-19. PubMed ID: 10547289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and testing of a de novo drug-design algorithm.
    Pellegrini E; Field MJ
    J Comput Aided Mol Des; 2003 Oct; 17(10):621-41. PubMed ID: 15068363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration of ligands of influenza virus neuraminidase studied by the fragment molecular orbital method.
    Tokuda K; Watanabe C; Okiyama Y; Mochizuki Y; Fukuzawa K; Komeiji Y
    J Mol Graph Model; 2016 Sep; 69():144-53. PubMed ID: 27611645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs.
    Böhm HJ
    J Comput Aided Mol Des; 1998 Jul; 12(4):309-23. PubMed ID: 9777490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies to calculate water binding free energies in protein-ligand complexes.
    Bodnarchuk MS; Viner R; Michel J; Essex JW
    J Chem Inf Model; 2014 Jun; 54(6):1623-33. PubMed ID: 24684745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Including tightly-bound water molecules in de novo drug design. Exemplification through the in silico generation of poly(ADP-ribose)polymerase ligands.
    García-Sosa AT; Firth-Clark S; Mancera RL
    J Chem Inf Model; 2005; 45(3):624-33. PubMed ID: 15921452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implication of crystal water molecules in inhibitor binding at ALR2 active site.
    Hymavati ; Kumar V; Sobhia ME
    Comput Math Methods Med; 2012; 2012():541594. PubMed ID: 22649481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules.
    Yu W; Lakkaraju SK; Raman EP; Fang L; MacKerell AD
    J Chem Inf Model; 2015 Feb; 55(2):407-20. PubMed ID: 25622696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo ligand design to an ensemble of protein structures.
    Todorov NP; Buenemann CL; Alberts IL
    Proteins; 2006 Jul; 64(1):43-59. PubMed ID: 16555306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic placement of structural water molecules for improved scoring of protein-ligand interactions.
    Huggins DJ; Tidor B
    Protein Eng Des Sel; 2011 Oct; 24(10):777-89. PubMed ID: 21771870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.