These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12511079)

  • 41. [Physiology of the visual retinal signal: From phototransduction to the visual cycle].
    Salesse C
    J Fr Ophtalmol; 2017 Mar; 40(3):239-250. PubMed ID: 28318721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ionochromic properties of long-wave-sensitive cones in the goldfish retina: an electrophysiological and microspectrophotometric study.
    Zak PP; Ostrovsky MA; Bowmaker JK
    Vision Res; 2001 Jun; 41(14):1755-63. PubMed ID: 11369039
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visual pigment density in single primate foveal cones.
    Dobelle WH; Marks WB; MacNichol EF
    Science; 1969 Dec; 166(3912):1508-10. PubMed ID: 17655043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoreceptor cell types in the retina of various vertebrate species: immunocytochemistry with antibodies against rhodopsin and iodopsin.
    Kawata A; Oishi T; Fukada Y; Shichida Y; Yoshizawa T
    Photochem Photobiol; 1992 Dec; 56(6):1157-66. PubMed ID: 1492130
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visual ecology of the Australian lungfish (Neoceratodus forsteri).
    Hart NS; Bailes HJ; Vorobyev M; Marshall NJ; Collin SP
    BMC Ecol; 2008 Dec; 8():21. PubMed ID: 19091135
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultraviolet visual pigments in marine fishes of the family pomacentridae.
    McFarland WN; Loew ER
    Vision Res; 1994 Jun; 34(11):1393-6. PubMed ID: 8023448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The cone photoreceptors and visual pigments of chameleons.
    Bowmaker JK; Loew ER; Ott M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Oct; 191(10):925-32. PubMed ID: 16025336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870).
    Bailes HJ; Robinson SR; Trezise AE; Collin SP
    J Comp Neurol; 2006 Jan; 494(3):381-97. PubMed ID: 16320259
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology.
    Ala-Laurila P; Kolesnikov AV; Crouch RK; Tsina E; Shukolyukov SA; Govardovskii VI; Koutalos Y; Wiggert B; Estevez ME; Cornwall MC
    J Gen Physiol; 2006 Aug; 128(2):153-69. PubMed ID: 16847097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. S cones: Evolution, retinal distribution, development, and spectral sensitivity.
    Hunt DM; Peichl L
    Vis Neurosci; 2014 Mar; 31(2):115-38. PubMed ID: 23895771
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visual pigments of Baltic Sea fishes of marine and limnic origin.
    Jokela-Määttä M; Smura T; Aaltonen A; Ala-Laurila P; Donner K
    Vis Neurosci; 2007; 24(3):389-98. PubMed ID: 17822578
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three cone opsin genes determine the properties of the visual spectra in the Japanese anchovy, Engraulis japonicus (Engraulidae, Teleostei).
    Kondrashev SL; Miyazaki T; Lamash NE; Tsuchiya T
    J Exp Biol; 2013 Mar; 216(Pt 6):1041-52. PubMed ID: 23197087
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immunocytochemical reactivity of Xenopus laevis retinal rods and cones with several monoclonal antibodies to visual pigments.
    Röhlich P; Szél A; Papermaster DS
    J Comp Neurol; 1989 Dec; 290(1):105-17. PubMed ID: 2592607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple photopigments from the Mexican blind cavefish, Astyanax fasciatus: a microspectrophotometric study.
    Parry JW; Peirson SN; Wilkens H; Bowmaker JK
    Vision Res; 2003 Jan; 43(1):31-41. PubMed ID: 12505602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences.
    Das D; Wilkie SE; Hunt DM; Bowmaker JK
    Vision Res; 1999 Aug; 39(17):2801-15. PubMed ID: 10492811
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visual pigments, cone oil droplets and ocular media in four species of estrildid finch.
    Hart NS; Partridge JC; Bennett AT; Cuthill IC
    J Comp Physiol A; 2000; 186(7-8):681-94. PubMed ID: 11016784
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DISCO! Dissociation of cone opsins: the fast and noisy life of cones explained.
    Travis GH
    Neuron; 2005 Jun; 46(6):840-2. PubMed ID: 15953411
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes.
    Hart NS; Coimbra JP; Collin SP; Westhoff G
    J Comp Neurol; 2012 Apr; 520(6):1246-61. PubMed ID: 22020556
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake.
    Schott RK; Müller J; Yang CG; Bhattacharyya N; Chan N; Xu M; Morrow JM; Ghenu AH; Loew ER; Tropepe V; Chang BS
    Proc Natl Acad Sci U S A; 2016 Jan; 113(2):356-61. PubMed ID: 26715746
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds.
    Bowmaker JK; Heath LA; Wilkie SE; Hunt DM
    Vision Res; 1997 Aug; 37(16):2183-94. PubMed ID: 9578901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.