BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12511194)

  • 1. Mutations of penicillin acylase residue B71 extend substrate specificity by decreasing steric constraints for substrate binding.
    Morillas M; McVey CE; Brannigan JA; Ladurner AG; Forney LJ; Virden R
    Biochem J; 2003 Apr; 371(Pt 1):143-50. PubMed ID: 12511194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of amidases with novel substrate specificities from penicillin amidase of Escherichia coli.
    Forney LJ; Wong DC; Ferber DM
    Appl Environ Microbiol; 1989 Oct; 55(10):2550-5. PubMed ID: 2690733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism.
    McVey CE; Walsh MA; Dodson GG; Wilson KS; Brannigan JA
    J Mol Biol; 2001 Oct; 313(1):139-50. PubMed ID: 11601852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing the substrate specificity of penicillin G acylase from Kluyvera citrophila through selective pressure.
    Roa A; Garcia JL; Salto F; Cortes E
    Biochem J; 1994 Nov; 303 ( Pt 3)(Pt 3):869-75. PubMed ID: 7980457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of a key residue in the substrate specificity of a cephalosporin acylase.
    Otten LG; Sio CF; van der Sloot AM; Cool RH; Quax WJ
    Chembiochem; 2004 Jun; 5(6):820-5. PubMed ID: 15174165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of penicillin G acylase from the Bro1 mutant strain of Providencia rettgeri.
    McDonough MA; Klei HE; Kelly JA
    Protein Sci; 1999 Oct; 8(10):1971-81. PubMed ID: 10548042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering the substrate specificity of cephalosporin acylase by directed evolution of the Beta -subunit.
    Otten LG; Sio CF; Vrielink J; Cool RH; Quax WJ
    J Biol Chem; 2002 Nov; 277(44):42121-7. PubMed ID: 12198140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a class III engineered cephalosporin acylase: comparisons with class I acylase and implications for differences in substrate specificity and catalytic activity.
    Golden E; Paterson R; Tie WJ; Anandan A; Flematti G; Molla G; Rosini E; Pollegioni L; Vrielink A
    Biochem J; 2013 Apr; 451(2):217-26. PubMed ID: 23373797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies and molecular modelling attribute a crucial role in the specificity and stereoselectivity of penicillin acylase to the pair ArgA145-ArgB263.
    Guncheva M; Ivanov I; Galunsky B; Stambolieva N; Kaneti J
    Eur J Biochem; 2004 Jun; 271(11):2272-9. PubMed ID: 15153118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the activity and stability of GL-7-ACA acylase CA130 by site-directed mutagenesis.
    Zhang W; Liu Y; Zheng H; Yang S; Jiang W
    Appl Environ Microbiol; 2005 Sep; 71(9):5290-6. PubMed ID: 16151116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved activity and pH stability of E. coli ATCC 11105 penicillin acylase by error-prone PCR.
    Balci H; Ozturk MT; Pijning T; Ozturk SI; Gumusel F
    Appl Microbiol Biotechnol; 2014 May; 98(10):4467-77. PubMed ID: 24389703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of alphaArg145 and betaArg263 in the active site of penicillin acylase of Escherichia coli.
    Alkema WB; Prins AK; de Vries E; Janssen DB
    Biochem J; 2002 Jul; 365(Pt 1):303-9. PubMed ID: 12071857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifying the substrate specificity of penicillin G acylase to cephalosporin acylase by mutating active-site residues.
    Oh B; Kim K; Park J; Yoon J; Han D; Kim Y
    Biochem Biophys Res Commun; 2004 Jun; 319(2):486-92. PubMed ID: 15178432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly active adipyl-cephalosporin acylase obtained via rational randomization.
    Otten LG; Sio CF; Reis CR; Koch G; Cool RH; Quax WJ
    FEBS J; 2007 Nov; 274(21):5600-10. PubMed ID: 17922842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of the catalytic efficiency of penicillin amidase from Escherichia coli.
    Forney LJ; Wong DC
    Appl Environ Microbiol; 1989 Oct; 55(10):2556-60. PubMed ID: 2690734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure mediation in substrate binding and post-translational processing of penicillin acylases: Information from mutant structures of Kluyvera citrophila penicillin G acylase.
    Chand D; Varshney N; Ramasamy S; Panigrahi P; Brannigan JA; Wilkinson AJ; Suresh CG
    Protein Sci; 2015 Oct; 24(10):1660-70. PubMed ID: 26243007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
    Yang G; Sandalova T; Lohman K; Lindqvist Y; Rendina AR
    Biochemistry; 1997 Apr; 36(16):4751-60. PubMed ID: 9125495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the diastereoselectivity of penicillin G acylase for ampicillin synthesis from racemic substrates.
    Deaguero AL; Blum JK; Bommarius AS
    Protein Eng Des Sel; 2012 Mar; 25(3):135-44. PubMed ID: 22271751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single point mutation converts a glutaryl-7-aminocephalosporanic acid acylase into an N-acyl-homoserine lactone acylase.
    Murugayah SA; Evans GB; Tyndall JDA; Gerth ML
    Biotechnol Lett; 2021 Jul; 43(7):1467-1473. PubMed ID: 33891232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategic manipulation of an industrial biocatalyst--evolution of a cephalosporin C acylase.
    Conti G; Pollegioni L; Molla G; Rosini E
    FEBS J; 2014 May; 281(10):2443-55. PubMed ID: 24684708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.