These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 12511300)
1. Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures. Atwell BJ; Henery ML; Whitehead D Tree Physiol; 2003 Jan; 23(1):13-21. PubMed ID: 12511300 [TBL] [Abstract][Full Text] [Related]
2. Canopy position and needle age affect photosynthetic response in field-grown Pinus radiata after five years of exposure to elevated carbon dioxide partial pressure. Tissue DT; Griffin KL; Turnbull MH; Whitehead D Tree Physiol; 2001 Aug; 21(12-13):915-23. PubMed ID: 11498338 [TBL] [Abstract][Full Text] [Related]
3. Diameter growth of Scots pine (Pinus sylvestris) trees grown at elevated temperature and carbon dioxide concentration under boreal conditions. Peltola H; Kilpeläinen A; Kellomäki S Tree Physiol; 2002 Oct; 22(14):963-72. PubMed ID: 12359523 [TBL] [Abstract][Full Text] [Related]
4. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Kilpeläinen A; Peltola H; Ryyppö A; Sauvala K; Laitinen K; Kellomäki S Tree Physiol; 2003 Sep; 23(13):889-97. PubMed ID: 14532012 [TBL] [Abstract][Full Text] [Related]
5. Variations in dark respiration and mitochondrial numbers within needles of Pinus radiata grown in ambient or elevated CO2 partial pressure. Griffin KL; Anderson OR; Tissue DT; Turnbull MH; Whitehead D Tree Physiol; 2004 Mar; 24(3):347-53. PubMed ID: 14704144 [TBL] [Abstract][Full Text] [Related]
6. Response of photosynthesis in second-generation Pinus radiata trees to long-term exposure to elevated carbon dioxide partial pressure. Greenep H; Turnbull MH; Whitehead D Tree Physiol; 2003 Jun; 23(8):569-76. PubMed ID: 12730049 [TBL] [Abstract][Full Text] [Related]
7. Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties. Kilpeläinen A; Peltola H; Ryyppö A; Kellomäki S Tree Physiol; 2005 Jan; 25(1):75-83. PubMed ID: 15519988 [TBL] [Abstract][Full Text] [Related]
8. Temperature responses of growth and wood anatomy in European beech saplings grown in different carbon dioxide concentrations. Overdieck D; Ziche D; Böttcher-Jungclaus K Tree Physiol; 2007 Feb; 27(2):261-8. PubMed ID: 17241968 [TBL] [Abstract][Full Text] [Related]
9. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369 [TBL] [Abstract][Full Text] [Related]
10. Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest. Pruyn ML; Gartner BL; Harmon ME Tree Physiol; 2002 Feb; 22(2-3):105-16. PubMed ID: 11830407 [TBL] [Abstract][Full Text] [Related]
11. Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Booker FL; Maier CA Tree Physiol; 2001 Jun; 21(9):609-16. PubMed ID: 11390305 [TBL] [Abstract][Full Text] [Related]
12. Stem growth and respiration in loblolly pine plantations differing in soil resource availability. Maier CA Tree Physiol; 2001 Oct; 21(16):1183-93. PubMed ID: 11600340 [TBL] [Abstract][Full Text] [Related]
13. Effects of elevated carbon dioxide concentration and temperature on needle growth, respiration and carbohydrate status in field-grown Scots pines during the needle expansion period. Zha T; Ryyppö A; Wang KY; Kellomäki S Tree Physiol; 2001 Nov; 21(17):1279-87. PubMed ID: 11696415 [TBL] [Abstract][Full Text] [Related]
14. Carbon assimilation and nitrogen in needles of fertilized and unfertilized field-grown Scots pine at natural and elevated concentrations of CO2. Laitinen K; Luomala EM; Kellomäki S; Vapaavuori E Tree Physiol; 2000 Jul; 20(13):881-92. PubMed ID: 11303578 [TBL] [Abstract][Full Text] [Related]
15. Influence of tree internal nitrogen reserves on the response of beech (Fagus sylvatica) trees to elevated atmospheric carbon dioxide concentration. Dyckmans J; Flessa H Tree Physiol; 2002 Jan; 22(1):41-9. PubMed ID: 11772554 [TBL] [Abstract][Full Text] [Related]
16. Seasonal root distribution and soil surface carbon fluxes for one-year-old Pinus radiata trees growing at ambient and elevated carbon dioxide concentration. Thomas SM; Whitehead D; Adams JA; Reid JB; Sherlock RR; Leckie AC Tree Physiol; 1996; 16(11_12):1015-1021. PubMed ID: 14871796 [TBL] [Abstract][Full Text] [Related]
17. Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration. Janssens IA; Medlyn B; Gielen B; Laureysens I; Jach ME; Van Hove D; Ceulemans R Tree Physiol; 2005 Mar; 25(3):325-37. PubMed ID: 15631981 [TBL] [Abstract][Full Text] [Related]
18. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tissue DT; Lewis JD; Wullschleger SD; Amthor JS; Griffin KL; Anderson OR Tree Physiol; 2002 Nov; 22(15-16):1157-66. PubMed ID: 12414375 [TBL] [Abstract][Full Text] [Related]
19. Lignification in beech (Fagus sylvatica) grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation. Blaschke L; Forstreuter M; Sheppard LJ; Leith IK; Murray MB; Polle A Tree Physiol; 2002 May; 22(7):469-77. PubMed ID: 11986050 [TBL] [Abstract][Full Text] [Related]
20. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Temperton VM; Grayston SJ; Jackson G; Barton CV; Millard P; Jarvis PG Tree Physiol; 2003 Oct; 23(15):1051-9. PubMed ID: 12975129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]