These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 12511302)
1. Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Awada T; Radoglou K; Fotelli MN; Constantinidou HI Tree Physiol; 2003 Jan; 23(1):33-41. PubMed ID: 12511302 [TBL] [Abstract][Full Text] [Related]
2. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis). Hieke S; Menzel CM; Lüdders P Tree Physiol; 2002 Dec; 22(17):1249-56. PubMed ID: 12464578 [TBL] [Abstract][Full Text] [Related]
3. Leaf gas exchange and carbohydrates in tropical trees differing in successional status in two light environments in central Amazonia. Marenco RA; de C Gonçalves JF; Vieira G Tree Physiol; 2001 Dec; 21(18):1311-8. PubMed ID: 11731341 [TBL] [Abstract][Full Text] [Related]
4. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding. Mielke MS; Schaffer B Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194 [TBL] [Abstract][Full Text] [Related]
5. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings. Zhang S; Dang QL Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153 [TBL] [Abstract][Full Text] [Related]
6. Responses of transpiration and photosynthesis to reversible changes in photosynthetic foliage area in western red cedar (Thuja plicata) seedlings. Pepin S; Livingston NJ; Whitehead D Tree Physiol; 2002 Apr; 22(6):363-71. PubMed ID: 11960761 [TBL] [Abstract][Full Text] [Related]
7. Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations. Herrick JD; Thomas RB Tree Physiol; 2003 Feb; 23(2):109-18. PubMed ID: 12533305 [TBL] [Abstract][Full Text] [Related]
8. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Jifon JL; Syvertsen JP Tree Physiol; 2003 Feb; 23(2):119-27. PubMed ID: 12533306 [TBL] [Abstract][Full Text] [Related]
9. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369 [TBL] [Abstract][Full Text] [Related]
10. Gas exchange characteristics of a Canarian laurel forest tree species (Laurus azorica) in relation to environmental conditions and leaf canopy position. González-Rodríguez AM; Morales D; Jiménez MS Tree Physiol; 2001 Sep; 21(14):1039-45. PubMed ID: 11560817 [TBL] [Abstract][Full Text] [Related]
11. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes. Gardiner ES; Krauss KW Tree Physiol; 2001 Sep; 21(15):1103-11. PubMed ID: 11581017 [TBL] [Abstract][Full Text] [Related]
12. Responses of hybrid poplar clones and red maple seedlings to ambient O(3) under differing light within a mixed hardwood forest. Wei C; Skelly JM; Pennypacker SP; Ferdinand JA; Savage JE; Stevenson RE; Davis DD Environ Pollut; 2004 Jul; 130(2):199-214. PubMed ID: 15158034 [TBL] [Abstract][Full Text] [Related]
13. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine. Chang CY; Fréchette E; Unda F; Mansfield SD; Ensminger I Plant Physiol; 2016 Oct; 172(2):802-818. PubMed ID: 27591187 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of photosynthesis and stomatal conductance in the shrubland species manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides) for the estimation of annual canopy carbon uptake. Whitehead D; Walcroft AS; Scott NA; Townsend JA; Trotter CM; Rogers GN Tree Physiol; 2004 Jul; 24(7):795-804. PubMed ID: 15123451 [TBL] [Abstract][Full Text] [Related]
15. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit. Chmura DJ; Modrzyński J; Chmielarz P; Tjoelker MG Plant Biol (Stuttg); 2017 Mar; 19(2):172-182. PubMed ID: 27981788 [TBL] [Abstract][Full Text] [Related]
16. Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Koike T; Kitao M; Maruyama Y; Mori S; Lei TT Tree Physiol; 2001 Aug; 21(12-13):951-8. PubMed ID: 11498342 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings. Villar-Salvador P; Peñuelas JL; Jacobs DF Tree Physiol; 2013 Feb; 33(2):221-32. PubMed ID: 23370549 [TBL] [Abstract][Full Text] [Related]
18. Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland. Letts MG; Phelan CA; Johnson DR; Rood SB Tree Physiol; 2008 Jul; 28(7):1037-48. PubMed ID: 18450568 [TBL] [Abstract][Full Text] [Related]
19. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees. Lichtenthaler HK; Babani F; Navrátil M; Buschmann C Photosynth Res; 2013 Nov; 117(1-3):355-66. PubMed ID: 23670216 [TBL] [Abstract][Full Text] [Related]
20. Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. Urban O; Kosvancová M; Marek MV; Lichtenthaler HK Tree Physiol; 2007 Aug; 27(8):1207-15. PubMed ID: 17472946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]