These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 12511507)
1. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). Okamoto S; Lezhava A; Hosaka T; Okamoto-Hosoya Y; Ochi K J Bacteriol; 2003 Jan; 185(2):601-9. PubMed ID: 12511507 [TBL] [Abstract][Full Text] [Related]
2. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. Kim DJ; Huh JH; Yang YY; Kang CM; Lee IH; Hyun CG; Hong SK; Suh JW J Bacteriol; 2003 Jan; 185(2):592-600. PubMed ID: 12511506 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of yeast S-adenosylmethionine synthetase metK in Streptomyces actuosus leads to increased production of nosiheptide. Zhang X; Fen M; Shi X; Bai L; Zhou P Appl Microbiol Biotechnol; 2008 Apr; 78(6):991-5. PubMed ID: 18330566 [TBL] [Abstract][Full Text] [Related]
4. S-Adenosylmethionine (SAM) and antibiotic biosynthesis: effect of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces. Zhao XQ; Gust B; Heide L Arch Microbiol; 2010 Apr; 192(4):289-97. PubMed ID: 20177662 [TBL] [Abstract][Full Text] [Related]
5. Effects of Chromosomal Integration of the Vitreoscilla Hemoglobin Gene (vgb) and S-Adenosylmethionine Synthetase Gene (metK) on ε-Poly-L-Lysine Synthesis in Streptomyces albulus NK660. Gu Y; Wang X; Yang C; Geng W; Feng J; Wang Y; Wang S; Song C Appl Biochem Biotechnol; 2016 Apr; 178(7):1445-57. PubMed ID: 26749294 [TBL] [Abstract][Full Text] [Related]
6. Involvement of amfC in physiological and morphological development in Streptomyces coelicolor A3(2). Yonekawa T; Ohnishi Y; Horinouchi S Microbiology (Reading); 1999 Sep; 145 ( Pt 9)():2273-2280. PubMed ID: 10517580 [TBL] [Abstract][Full Text] [Related]
7. Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). Nishimura K; Hosaka T; Tokuyama S; Okamoto S; Ochi K J Bacteriol; 2007 May; 189(10):3876-83. PubMed ID: 17384192 [TBL] [Abstract][Full Text] [Related]
8. Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Gramajo HC; Takano E; Bibb MJ Mol Microbiol; 1993 Mar; 7(6):837-45. PubMed ID: 7683365 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. Arias P; Fernández-Moreno MA; Malpartida F J Bacteriol; 1999 Nov; 181(22):6958-68. PubMed ID: 10559161 [TBL] [Abstract][Full Text] [Related]
10. Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Onaka H; Nakagawa T; Horinouchi S Mol Microbiol; 1998 May; 28(4):743-53. PubMed ID: 9643542 [TBL] [Abstract][Full Text] [Related]
11. Studies on the role of the metK gene product of Escherichia coli K-12. Wei Y; Newman EB Mol Microbiol; 2002 Mar; 43(6):1651-6. PubMed ID: 11952912 [TBL] [Abstract][Full Text] [Related]
12. Disruption of rimP-SC, encoding a ribosome assembly cofactor, markedly enhances the production of several antibiotics in Streptomyces coelicolor. Pan Y; Lu C; Dong H; Yu L; Liu G; Tan H Microb Cell Fact; 2013 Jul; 12():65. PubMed ID: 23815792 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of metK shows different effects on avermectin production in various Streptomyces avermitilis strains. Zhao X; Wang Q; Guo W; Cai Y; Wang C; Wang S; Xiang S; Song Y World J Microbiol Biotechnol; 2013 Oct; 29(10):1869-75. PubMed ID: 23579768 [TBL] [Abstract][Full Text] [Related]
14. Binding study of AfsK, a Ser/Thr kinase from Streptomyces coelicolor A3(2) and S-adenosyl-L-methionine. Lee Y; Kim K; Suh JW; Rhee S; Lim Y FEMS Microbiol Lett; 2007 Jan; 266(2):236-40. PubMed ID: 17132150 [TBL] [Abstract][Full Text] [Related]
15. Enhanced lincomycin production by co-overexpression of metK1 and metK2 in Streptomyces lincolnensis. Xu Y; Tan G; Ke M; Li J; Tang Y; Meng S; Niu J; Wang Y; Liu R; Wu H; Bai L; Zhang L; Zhang B J Ind Microbiol Biotechnol; 2018 May; 45(5):345-355. PubMed ID: 29574602 [TBL] [Abstract][Full Text] [Related]
16. S-adenosyl-L-methionine activates actinorhodin biosynthesis by increasing autophosphorylation of the Ser/Thr protein kinase AfsK in Streptomyces coelicolor A3(2). Jin YY; Cheng J; Yang SH; Meng L; Palaniyandi SA; Zhao XQ; Suh JW Biosci Biotechnol Biochem; 2011; 75(5):910-3. PubMed ID: 21597198 [TBL] [Abstract][Full Text] [Related]
17. An additional regulatory gene for actinorhodin production in Streptomyces lividans involves a LysR-type transcriptional regulator. Martínez-Costa OH; Martín-Triana AJ; Martínez E; Fernández-Moreno MA; Malpartida F J Bacteriol; 1999 Jul; 181(14):4353-64. PubMed ID: 10400594 [TBL] [Abstract][Full Text] [Related]
18. Production of a novel O-methyl-isoflavone by regioselective sequential hydroxylation and O-methylation reactions in Streptomyces avermitilis host system. Choi KY; Jung E; Yang YH; Kim BG Biotechnol Bioeng; 2013 Oct; 110(10):2591-9. PubMed ID: 23592181 [TBL] [Abstract][Full Text] [Related]
19. Isozymes of S-adenosylmethionine synthetase are encoded by tandemly duplicated genes in Escherichia coli. Satishchandran C; Taylor JC; Markham GD Mol Microbiol; 1993 Aug; 9(4):835-46. PubMed ID: 8231813 [TBL] [Abstract][Full Text] [Related]
20. Identification of a mutation in the Bacillus subtilis S-adenosylmethionine synthetase gene that results in derepression of S-box gene expression. McDaniel BA; Grundy FJ; Kurlekar VP; Tomsic J; Henkin TM J Bacteriol; 2006 May; 188(10):3674-81. PubMed ID: 16672621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]