These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12511589)

  • 21. Role of group B streptococcal capsular polysaccharides in the induction of septic arthritis.
    Tissi L; von Hunolstein C; Bistoni F; Marangi M; Parisi L; Orefici G
    J Med Microbiol; 1998 Aug; 47(8):717-23. PubMed ID: 9877193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Streptococcus pneumoniae IgA1 protease: A metalloprotease that can catalyze in a split manner in vitro.
    Chi YC; Rahkola JT; Kendrick AA; Holliday MJ; Paukovich N; Roberts TS; Janoff EN; Eisenmesser EZ
    Protein Sci; 2017 Mar; 26(3):600-610. PubMed ID: 28028839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of fibrinogen binding by glycoproteins Srr1 and Srr2 of Streptococcus agalactiae.
    Seo HS; Minasov G; Seepersaud R; Doran KS; Dubrovska I; Shuvalova L; Anderson WF; Iverson TM; Sullam PM
    J Biol Chem; 2013 Dec; 288(50):35982-96. PubMed ID: 24165132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impaired plasma clottability induction through fibrinogen degradation by ASP, a serine protease released from Aeromonas sobria.
    Imamura T; Nitta H; Wada Y; Kobayashi H; Okamoto K
    FEMS Microbiol Lett; 2008 Jul; 284(1):35-42. PubMed ID: 18462393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Serine protease PrtA from Streptococcus pneumoniae plays a role in the killing of S. pneumoniae by apolactoferrin.
    Mirza S; Wilson L; Benjamin WH; Novak J; Barnes S; Hollingshead SK; Briles DE
    Infect Immun; 2011 Jun; 79(6):2440-50. PubMed ID: 21422179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human Intelectin-1 Promotes Cellular Attachment and Neutrophil Killing of Streptococcus pneumoniae in a Serotype-Dependent Manner.
    Andresen S; Fantone K; Chapla D; Rada B; Moremen KW; Pierce M; Szymanski CM
    Infect Immun; 2022 May; 90(5):e0068221. PubMed ID: 35499339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antiopsonic activity of fibrinogen bound to M protein on the surface of group A streptococci.
    Whitnack E; Beachey EH
    J Clin Invest; 1982 Apr; 69(4):1042-5. PubMed ID: 7042754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histidine and aspartic acid residues important for immunoglobulin G endopeptidase activity of the group A Streptococcus opsonophagocytosis-inhibiting Mac protein.
    Lei B; Liu M; Meyers EG; Manning HM; Nagiec MJ; Musser JM
    Infect Immun; 2003 May; 71(5):2881-4. PubMed ID: 12704162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein FOG--a streptococcal inhibitor of neutrophil function.
    Johansson HM; Mörgelin M; Frick IM
    Microbiology (Reading); 2004 Dec; 150(Pt 12):4211-21. PubMed ID: 15583173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SufA - a bacterial enzyme that cleaves fibrinogen and blocks fibrin network formation.
    Karlsson C; Mörgelin M; Collin M; Lood R; Andersson ML; Schmidtchen A; Björck L; Frick IM
    Microbiology (Reading); 2009 Jan; 155(Pt 1):238-248. PubMed ID: 19118364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Host-parasite relationships in experimental pneumonia due to pneumococcus type III.
    WOOD WB; SMITH MR
    J Exp Med; 1950 Jul; 92(1):85-100. PubMed ID: 15422100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of cspA on the Preparation of Escherichia coli Competent Cells by Calcium Chloride Method.
    Chen X; Zhu N; Yang G; Guo X; Sun S; Leng F; Wang Y
    J Basic Microbiol; 2024 Aug; 64(8):e2400113. PubMed ID: 38924123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The type-2
    Lapschies AM; Aubry E; Kohler TP; Goldmann O; Hammerschmidt S; Nerlich A; Eichhorn I; van Vorst K; Fulde M
    Front Microbiol; 2023; 14():1228472. PubMed ID: 37965557
    [No Abstract]   [Full Text] [Related]  

  • 34.
    Witt LT; Greenfield KG; Knoop KA
    iScience; 2024 May; 27(5):109669. PubMed ID: 38646164
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Witt LT; Greenfield KG; Knoop KA
    bioRxiv; 2024 Mar; ():. PubMed ID: 37873122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunization with Multiple Virulence Factors Provides Maternal and Neonatal Protection against Group B Streptococcus Serotypes.
    Wang J; Li W; Li N; Wang B
    Vaccines (Basel); 2023 Sep; 11(9):. PubMed ID: 37766135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular epidemiology, drug resistance, and virulence gene analysis of
    Shi H; Zhou M; Zhang Z; Hu Y; Song S; Hui R; Wang L; Li G; Yao L
    Front Cell Infect Microbiol; 2022; 12():1049167. PubMed ID: 36699728
    [No Abstract]   [Full Text] [Related]  

  • 38. Virulence Factor Genes and Cytotoxicity of
    Zastempowska E; Twarużek M; Grajewski J; Lassa H
    Microbiol Spectr; 2022 Jun; 10(3):e0222421. PubMed ID: 35608349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protease activities of vaginal Porphyromonas species disrupt coagulation and extracellular matrix in the cervicovaginal niche.
    Lithgow KV; Buchholz VCH; Ku E; Konschuh S; D'Aubeterre A; Sycuro LK
    NPJ Biofilms Microbiomes; 2022 Feb; 8(1):8. PubMed ID: 35190575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease.
    Ali MQ; Kohler TP; Schulig L; Burchhardt G; Hammerschmidt S
    Front Cell Infect Microbiol; 2021; 11():763152. PubMed ID: 34790590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.