BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 12511592)

  • 1. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity.
    Viollet B; Andreelli F; Jørgensen SB; Perrin C; Geloen A; Flamez D; Mu J; Lenzner C; Baud O; Bennoun M; Gomas E; Nicolas G; Wojtaszewski JF; Kahn A; Carling D; Schuit FC; Birnbaum MJ; Richter EA; Burcelin R; Vaulont S
    J Clin Invest; 2003 Jan; 111(1):91-8. PubMed ID: 12511592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models.
    Viollet B; Andreelli F; Jørgensen SB; Perrin C; Flamez D; Mu J; Wojtaszewski JF; Schuit FC; Birnbaum M; Richter E; Burcelin R; Vaulont S
    Biochem Soc Trans; 2003 Feb; 31(Pt 1):216-9. PubMed ID: 12546688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin.
    Andreelli F; Foretz M; Knauf C; Cani PD; Perrin C; Iglesias MA; Pillot B; Bado A; Tronche F; Mithieux G; Vaulont S; Burcelin R; Viollet B
    Endocrinology; 2006 May; 147(5):2432-41. PubMed ID: 16455782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle-specific overexpression of wild type and R225Q mutant AMP-activated protein kinase gamma3-subunit differentially regulates glycogen accumulation.
    Yu H; Hirshman MF; Fujii N; Pomerleau JM; Peter LE; Goodyear LJ
    Am J Physiol Endocrinol Metab; 2006 Sep; 291(3):E557-65. PubMed ID: 16638825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α2 isoform-specific activation of 5'adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle.
    Nakano M; Hamada T; Hayashi T; Yonemitsu S; Miyamoto L; Toyoda T; Tanaka S; Masuzaki H; Ebihara K; Ogawa Y; Hosoda K; Inoue G; Yoshimasa Y; Otaka A; Fushiki T; Nakao K
    Metabolism; 2006 Mar; 55(3):300-8. PubMed ID: 16483872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle.
    Toyoda T; Tanaka S; Ebihara K; Masuzaki H; Hosoda K; Sato K; Fushiki T; Nakao K; Hayashi T
    Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E583-90. PubMed ID: 16249251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracerebroventricular infusion of glucose, insulin, and the adenosine monophosphate-activated kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, controls muscle glycogen synthesis.
    Perrin C; Knauf C; Burcelin R
    Endocrinology; 2004 Sep; 145(9):4025-33. PubMed ID: 15192044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of AMPK is essential for AICAR-induced glucose uptake by skeletal muscle but not adipocytes.
    Sakoda H; Ogihara T; Anai M; Fujishiro M; Ono H; Onishi Y; Katagiri H; Abe M; Fukushima Y; Shojima N; Inukai K; Kikuchi M; Oka Y; Asano T
    Am J Physiol Endocrinol Metab; 2002 Jun; 282(6):E1239-44. PubMed ID: 12006353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rosiglitazone treatment enhances acute AMP-activated protein kinase-mediated muscle and adipose tissue glucose uptake in high-fat-fed rats.
    Ye JM; Dzamko N; Hoy AJ; Iglesias MA; Kemp B; Kraegen E
    Diabetes; 2006 Oct; 55(10):2797-804. PubMed ID: 17003345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMP-activated protein kinase α2 is an essential signal in the regulation of insulin-stimulated fatty acid uptake in control-fed and high-fat-fed mice.
    Abbott MJ; Constantinescu S; Turcotte LP
    Exp Physiol; 2012 May; 97(5):603-17. PubMed ID: 22308162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic model for the chronic activation of skeletal muscle AMP-activated protein kinase leads to glycogen accumulation.
    Barré L; Richardson C; Hirshman MF; Brozinick J; Fiering S; Kemp BE; Goodyear LJ; Witters LA
    Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E802-11. PubMed ID: 17106064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased submaximal insulin-stimulated glucose uptake in mouse skeletal muscle after treadmill exercise.
    Hamada T; Arias EB; Cartee GD
    J Appl Physiol (1985); 2006 Nov; 101(5):1368-76. PubMed ID: 16809629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMP-activated protein kinase (AMPK)α2 plays a role in determining the cellular fate of glucose in insulin-resistant mouse skeletal muscle.
    Lee-Young RS; Bonner JS; Mayes WH; Iwueke I; Barrick BA; Hasenour CM; Kang L; Wasserman DH
    Diabetologia; 2013 Mar; 56(3):608-17. PubMed ID: 23224579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible involvement of the alpha1 isoform of 5'AMP-activated protein kinase in oxidative stress-stimulated glucose transport in skeletal muscle.
    Toyoda T; Hayashi T; Miyamoto L; Yonemitsu S; Nakano M; Tanaka S; Ebihara K; Masuzaki H; Hosoda K; Inoue G; Otaka A; Sato K; Fushiki T; Nakao K
    Am J Physiol Endocrinol Metab; 2004 Jul; 287(1):E166-73. PubMed ID: 15026306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postcontraction insulin sensitivity: relationship with contraction protocol, glycogen concentration, and 5' AMP-activated protein kinase phosphorylation.
    Kim J; Solis RS; Arias EB; Cartee GD
    J Appl Physiol (1985); 2004 Feb; 96(2):575-83. PubMed ID: 14555687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbohydrate ingestion does not alter skeletal muscle AMPK signaling during exercise in humans.
    Lee-Young RS; Palmer MJ; Linden KC; LePlastrier K; Canny BJ; Hargreaves M; Wadley GD; Kemp BE; McConell GK
    Am J Physiol Endocrinol Metab; 2006 Sep; 291(3):E566-73. PubMed ID: 16670154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary phytoestrogens activate AMP-activated protein kinase with improvement in lipid and glucose metabolism.
    Cederroth CR; Vinciguerra M; Gjinovci A; Kühne F; Klein M; Cederroth M; Caille D; Suter M; Neumann D; James RW; Doerge DR; Wallimann T; Meda P; Foti M; Rohner-Jeanrenaud F; Vassalli JD; Nef S
    Diabetes; 2008 May; 57(5):1176-85. PubMed ID: 18420492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-fat diet feeding impairs both the expression and activity of AMPKa in rats' skeletal muscle.
    Liu Y; Wan Q; Guan Q; Gao L; Zhao J
    Biochem Biophys Res Commun; 2006 Jan; 339(2):701-7. PubMed ID: 16316631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle.
    Jørgensen SB; Treebak JT; Viollet B; Schjerling P; Vaulont S; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E331-9. PubMed ID: 16954334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Globular adiponectin resistance develops independently of impaired insulin-stimulated glucose transport in soleus muscle from high-fat-fed rats.
    Mullen KL; Smith AC; Junkin KA; Dyck DJ
    Am J Physiol Endocrinol Metab; 2007 Jul; 293(1):E83-90. PubMed ID: 17356008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.