These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 12511655)

  • 1. Extracting work from a single heat bath via vanishing quantum coherence.
    Scully MO; Zubairy MS; Agarwal GS; Walther H
    Science; 2003 Feb; 299(5608):862-4. PubMed ID: 12511655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting work from a single thermal bath via quantum negentropy.
    Scully MO
    Phys Rev Lett; 2001 Nov; 87(22):220601. PubMed ID: 11736390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forming and maintaining a heat engine for quantum biology.
    Matsuno K
    Biosystems; 2006 Jul; 85(1):23-9. PubMed ID: 16772129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Work extraction and thermodynamics for individual quantum systems.
    Skrzypczyk P; Short AJ; Popescu S
    Nat Commun; 2014 Jun; 5():4185. PubMed ID: 24969511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of an irreversible quantum Carnot engine with spin 12.
    Wu F; Chen L; Wu S; Sun F; Wu C
    J Chem Phys; 2006 Jun; 124(21):214702. PubMed ID: 16774426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical thermodynamics of quantum Brownian motion: construction of perpetuum mobile of the second kind.
    Nieuwenhuizen TM; Allahverdyan AE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036102. PubMed ID: 12366179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine.
    Türkpençe D; Müstecaplıoğlu ÖE
    Phys Rev E; 2016 Jan; 93(1):012145. PubMed ID: 26871061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency.
    Scully MO
    Phys Rev Lett; 2010 May; 104(20):207701. PubMed ID: 20867069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum engine efficiency bound beyond the second law of thermodynamics.
    Niedenzu W; Mukherjee V; Ghosh A; Kofman AG; Kurizki G
    Nat Commun; 2018 Jan; 9(1):165. PubMed ID: 29323109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum heat engine power can be increased by noise-induced coherence.
    Scully MO; Chapin KR; Dorfman KE; Kim MB; Svidzinsky A
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15097-100. PubMed ID: 21876187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Maxwell's demon in thermodynamic cycles.
    Dong H; Xu DZ; Cai CY; Sun CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061108. PubMed ID: 21797303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence.
    Dorfman KE; Xu D; Cao J
    Phys Rev E; 2018 Apr; 97(4-1):042120. PubMed ID: 29758726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic control by frequent quantum measurements.
    Erez N; Gordon G; Nest M; Kurizki G
    Nature; 2008 Apr; 452(7188):724-7. PubMed ID: 18401404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of quantum Otto refrigerators with squeezing.
    Long R; Liu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062137. PubMed ID: 26172691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM; Lee S; Chun HM; Noh JD
    Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodic thermodynamics of open quantum systems.
    Brandner K; Seifert U
    Phys Rev E; 2016 Jun; 93(6):062134. PubMed ID: 27415235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum heat engines and refrigerators: continuous devices.
    Kosloff R; Levy A
    Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity.
    Wang J; He J; He X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041127. PubMed ID: 22181107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.