BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 12512591)

  • 21. Cholesterol removal by some lactic acid bacteria that can be used as probiotic.
    Tok E; Aslim B
    Microbiol Immunol; 2010 May; 54(5):257-64. PubMed ID: 20536722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis.
    Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immune effect of heat-killed multistrain of Lactobacillus acidophilus against Salmonella typhimurium invasion to mice.
    Lin WH; Yu B; Lin CK; Hwang WZ; Tsen HY
    J Appl Microbiol; 2007 Jan; 102(1):22-31. PubMed ID: 17184316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2.
    Yumoto I; Hirota K; Iwata H; Akutsu M; Kusumoto K; Morita N; Ezura Y; Okuyama H; Matsuyama H
    Arch Microbiol; 2004 May; 181(5):345-51. PubMed ID: 15067498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assimilation of cholesterol by Lactobacillus acidophilus.
    Gilliland SE; Nelson CR; Maxwell C
    Appl Environ Microbiol; 1985 Feb; 49(2):377-81. PubMed ID: 3920964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased stress tolerance of Bifidobacterium longum and Lactococcus lactis produced during continuous mixed-strain immobilized-cell fermentation.
    Doleyres Y; Fliss I; Lacroix C
    J Appl Microbiol; 2004; 97(3):527-39. PubMed ID: 15281933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of growth conditions on the production of a bacteriocin by Lactococcus lactis subsp. lactis ST34BR, a strain isolated from barley beer.
    Todorov SD; Dicks LM
    J Basic Microbiol; 2004; 44(4):305-16. PubMed ID: 15266603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling the production of nisin by Lactococcus lactis in fed-batch culture.
    Lv W; Zhang X; Cong W
    Appl Microbiol Biotechnol; 2005 Aug; 68(3):322-6. PubMed ID: 15692804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of age and the amount of inoculate on the growth of Streptococcus lactis and its formation of nisin].
    Egorov NS; Kozlova IuI; Grushina VA
    Mikrobiologiia; 1975; 44(4):637-40. PubMed ID: 809641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microcalorimetric study of the growth of bacterial colonies of Lactococcus lactis IL1403 in agar gels.
    Kabanova N; Stulova I; Vilu R
    Food Microbiol; 2012 Feb; 29(1):67-79. PubMed ID: 22029920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assimilation of cholesterol by yeast strains isolated from infant feces and Feta cheese.
    Psomas EI; Fletouris DJ; Litopoulou-Tzanetaki E; Tzanetakis N
    J Dairy Sci; 2003 Nov; 86(11):3416-22. PubMed ID: 14672170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lactobacillus acidophilus 74-2 and Bifidobacterium animalis subsp lactis DGCC 420 modulate unspecific cellular immune response in healthy adults.
    Klein A; Friedrich U; Vogelsang H; Jahreis G
    Eur J Clin Nutr; 2008 May; 62(5):584-93. PubMed ID: 17440520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei.
    Brashears MM; Gilliland SE; Buck LM
    J Dairy Sci; 1998 Aug; 81(8):2103-10. PubMed ID: 9749373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth requirements and the effect of organic components of the synthetic medium on the biosynthesis of the antibiotic nisin in Streptococcus lactis strain.
    Kozak W; Dobrzański WT
    Acta Microbiol Pol; 1977; 26(4):361-8. PubMed ID: 75664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Biochemical characteristics of strains of lactic acid microorganisms used in cheese making].
    Matveeva EK; Krasheninin PF
    Prikl Biokhim Mikrobiol; 1973; 9(1):49-54. PubMed ID: 4633826
    [No Abstract]   [Full Text] [Related]  

  • 36. Nutritional requirements and media development for Lactococcus lactis IL1403.
    Aller K; Adamberg K; Timarova V; Seiman A; Feštšenko D; Vilu R
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5871-81. PubMed ID: 24626960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions.
    van Niel EW; Hofvendahl K; Hahn-Hägerdal B
    Appl Environ Microbiol; 2002 Sep; 68(9):4350-6. PubMed ID: 12200286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress.
    Guillot A; Obis D; Mistou MY
    Int J Food Microbiol; 2000 Apr; 55(1-3):47-51. PubMed ID: 10791716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of aminotransferase IlvE in production of branched-chain fatty acids by Lactococcus lactis subsp. lactis.
    Ganesan B; Weimer BC
    Appl Environ Microbiol; 2004 Jan; 70(1):638-41. PubMed ID: 14711703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus.
    Walker DK; Gilliland SE
    J Dairy Sci; 1993 Apr; 76(4):956-61. PubMed ID: 8486846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.