These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 12512689)

  • 1. Mechanisms of superoxide production in human blood vessels: relationship to endothelial dysfunction, clinical and genetic risk factors.
    Channon KM; Guzik TJ
    J Physiol Pharmacol; 2002 Dec; 53(4 Pt 1):515-24. PubMed ID: 12512689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes.
    Bitar MS; Wahid S; Mustafa S; Al-Saleh E; Dhaunsi GS; Al-Mulla F
    Eur J Pharmacol; 2005 Mar; 511(1):53-64. PubMed ID: 15777779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic regulation of vascular NAD(P)H oxidase activity and nox isoform expression in human arteries and veins.
    Guzik TJ; Sadowski J; Kapelak B; Jopek A; Rudzinski P; Pillai R; Korbut R; Channon KM
    Arterioscler Thromb Vasc Biol; 2004 Sep; 24(9):1614-20. PubMed ID: 15256399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase.
    Guzik TJ; Mussa S; Gastaldi D; Sadowski J; Ratnatunga C; Pillai R; Channon KM
    Circulation; 2002 Apr; 105(14):1656-62. PubMed ID: 11940543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy.
    Satoh M; Fujimoto S; Haruna Y; Arakawa S; Horike H; Komai N; Sasaki T; Tsujioka K; Makino H; Kashihara N
    Am J Physiol Renal Physiol; 2005 Jun; 288(6):F1144-52. PubMed ID: 15687247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis.
    Guzik TJ; West NE; Black E; McDonald D; Ratnatunga C; Pillai R; Channon KM
    Circulation; 2000 Oct; 102(15):1744-7. PubMed ID: 11023926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in vascular disease.
    Channon KM
    Trends Cardiovasc Med; 2004 Nov; 14(8):323-7. PubMed ID: 15596110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coronary artery superoxide production and nox isoform expression in human coronary artery disease.
    Guzik TJ; Sadowski J; Guzik B; Jopek A; Kapelak B; Przybylowski P; Wierzbicki K; Korbut R; Harrison DG; Channon KM
    Arterioscler Thromb Vasc Biol; 2006 Feb; 26(2):333-9. PubMed ID: 16293794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluvastatin reverses endothelial dysfunction and increased vascular oxidative stress in rat adjuvant-induced arthritis.
    Haruna Y; Morita Y; Yada T; Satoh M; Fox DA; Kashihara N
    Arthritis Rheum; 2007 Jun; 56(6):1827-35. PubMed ID: 17530711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity.
    Li R; Wang WQ; Zhang H; Yang X; Fan Q; Christopher TA; Lopez BL; Tao L; Goldstein BJ; Gao F; Ma XL
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1703-8. PubMed ID: 17895290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysfunction of endothelial nitric oxide synthase and atherosclerosis.
    Kawashima S; Yokoyama M
    Arterioscler Thromb Vasc Biol; 2004 Jun; 24(6):998-1005. PubMed ID: 15001455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pitavastatin restores vascular dysfunction in insulin-resistant state by inhibiting NAD(P)H oxidase activity and uncoupled endothelial nitric oxide synthase-dependent superoxide production.
    Shinozaki K; Nishio Y; Ayajiki K; Yoshida Y; Masada M; Kashiwagi A; Okamura T
    J Cardiovasc Pharmacol; 2007 Mar; 49(3):122-30. PubMed ID: 17414223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C242T p22phox polymorphism and endothelium-dependent vasodilation in subjects with hypercholesterolaemia.
    Schneider MP; Hilgers KF; Huang Y; Delles C; John S; Oehmer S; Schmieder RE
    Clin Sci (Lond); 2003 Jul; 105(1):97-103. PubMed ID: 12639216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncoupled endothelial nitric oxide synthase and oxidative stress in a rat model of pregnancy-induced hypertension.
    Mitchell BM; Cook LG; Danchuk S; Puschett JB
    Am J Hypertens; 2007 Dec; 20(12):1297-304. PubMed ID: 18047920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells.
    Cai S; Khoo J; Channon KM
    Cardiovasc Res; 2005 Mar; 65(4):823-31. PubMed ID: 15721862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice.
    Alp NJ; McAteer MA; Khoo J; Choudhury RP; Channon KM
    Arterioscler Thromb Vasc Biol; 2004 Mar; 24(3):445-50. PubMed ID: 14707037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide synthase and NAD(P)H oxidase modulate coronary endothelial cell growth.
    Bayraktutan U
    J Mol Cell Cardiol; 2004 Feb; 36(2):277-86. PubMed ID: 14871555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High glucose mediates pro-oxidant and antioxidant enzyme activities in coronary endothelial cells.
    Weidig P; McMaster D; Bayraktutan U
    Diabetes Obes Metab; 2004 Nov; 6(6):432-41. PubMed ID: 15479219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ghrelin inhibits vascular superoxide production in spontaneously hypertensive rats.
    Kawczynska-Drozdz A; Olszanecki R; Jawien J; Brzozowski T; Pawlik WW; Korbut R; Guzik TJ
    Am J Hypertens; 2006 Jul; 19(7):764-7. PubMed ID: 16814134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis.
    Laufs U; Wassmann S; Czech T; Münzel T; Eisenhauer M; Böhm M; Nickenig G
    Arterioscler Thromb Vasc Biol; 2005 Apr; 25(4):809-14. PubMed ID: 15692095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.