These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12512731)

  • 1. The water equivalence of solid materials used for dosimetry with small proton beams.
    Schneider U; Pemler P; Besserer J; Dellert M; Moosburger M; de Boer J; Pedroni E; Boehringer T
    Med Phys; 2002 Dec; 29(12):2946-51. PubMed ID: 12512731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluence correction factors in plastic phantoms for clinical proton beams.
    Palmans H; Symons JE; Denis JM; de Kock EA; Jones DT; Vynckier S
    Phys Med Biol; 2002 Sep; 47(17):3055-71. PubMed ID: 12361210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of an a-Si EPID in direct detection configuration as a water-equivalent dosimeter for transit dosimetry.
    Sabet M; Menk FW; Greer PB
    Med Phys; 2010 Apr; 37(4):1459-67. PubMed ID: 20443467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton minibeam radiation therapy: Experimental dosimetry evaluation.
    Peucelle C; Nauraye C; Patriarca A; Hierso E; Fournier-Bidoz N; Martínez-Rovira I; Prezado Y
    Med Phys; 2015 Dec; 42(12):7108-13. PubMed ID: 26632064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluence correction factors and stopping power ratios for clinical ion beams.
    Lühr A; Hansen DC; Sobolevsky N; Palmans H; Rossomme S; Bassler N
    Acta Oncol; 2011 Aug; 50(6):797-805. PubMed ID: 21767177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water equivalence of some plastic-water phantom materials for clinical proton beam dosimetry.
    Al-Sulaiti L; Shipley D; Thomas R; Owen P; Kacperek A; Regan PH; Palmans H
    Appl Radiat Isot; 2012 Jul; 70(7):1052-7. PubMed ID: 22386662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the water-equivalence of plastic materials in low- and high-energy clinical proton beams.
    Lourenço A; Shipley D; Wellock N; Thomas R; Bouchard H; Kacperek A; Fracchiolla F; Lorentini S; Schwarz M; MacDougall N; Royle G; Palmans H
    Phys Med Biol; 2017 May; 62(10):3883-3901. PubMed ID: 28319031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A procedure for calculation of monitor units for passively scattered proton radiotherapy beams.
    Sahoo N; Zhu XR; Arjomandy B; Ciangaru G; Lii M; Amos R; Wu R; Gillin MT
    Med Phys; 2008 Nov; 35(11):5088-97. PubMed ID: 19070243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the modulation transfer function (MTF) of proton/carbon radiography using Monte Carlo simulations.
    Seco J; Oumano M; Depauw N; Dias MF; Teixeira RP; Spadea MF
    Med Phys; 2013 Sep; 40(9):091717. PubMed ID: 24007150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quality assurance of proton beams using a multilayer ionization chamber system.
    Dhanesar S; Sahoo N; Kerr M; Taylor MB; Summers P; Zhu XR; Poenisch F; Gillin M
    Med Phys; 2013 Sep; 40(9):092102. PubMed ID: 24007171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative simulations of neutron dose in soft tissue and phantom materials for proton and carbon ion therapy with actively scanned beams.
    Hälg RA; Besserer J; Schneider U
    Med Phys; 2011 Jun; 38(6):3149-56. PubMed ID: 21815389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
    Titt U; Zheng Y; Vassiliev ON; Newhauser WD
    Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth ionization curves for an unmodulated proton beam measured with different ionization chambers.
    Mobit PN; Sandison GA; Bloch C
    Med Phys; 2000 Dec; 27(12):2780-7. PubMed ID: 11190961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of water equivalent ratios for various materials at proton energies ranging 10-500 MeV using MCNP, FLUKA, and GEANT4 Monte Carlo codes.
    Safigholi H; Song WY
    Phys Med Biol; 2018 Jul; 63(15):155010. PubMed ID: 29968580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A particle track-repeating algorithm for proton beam dose calculation.
    Li JS; Shahine B; Fourkal E; Ma CM
    Phys Med Biol; 2005 Mar; 50(5):1001-10. PubMed ID: 15798272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of absorbed dose, quality factor, and dose equivalent in water phantom outside of the irradiation field in passive carbon-ion and proton radiotherapies.
    Yonai S; Kase Y; Matsufuji N; Kanai T; Nishio T; Namba M; Yamashita W
    Med Phys; 2010 Aug; 37(8):4046-55. PubMed ID: 20879566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation.
    Li HS; Romeijn HE; Dempsey JF
    Med Phys; 2006 Sep; 33(9):3508-18. PubMed ID: 17022247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental evaluation of a spatial resampling technique to improve the accuracy of pencil-beam dose calculation in proton therapy.
    Egashira Y; Nishio T; Matsuura T; Kameoka S; Uesaka M
    Med Phys; 2012 Jul; 39(7):4104-14. PubMed ID: 22830743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.