These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12512775)

  • 1. Mechanisms of block of muscle type CLC chloride channels (Review).
    Pusch M; Accardi A; Liantonio A; Guida P; Traverso S; Camerino DC; Conti F
    Mol Membr Biol; 2002; 19(4):285-92. PubMed ID: 12512775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB).
    Pusch M; Accardi A; Liantonio A; Ferrera L; De Luca A; Camerino DC; Conti F
    J Gen Physiol; 2001 Jul; 118(1):45-62. PubMed ID: 11432801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational changes in the pore of CLC-0.
    Accardi A; Pusch M
    J Gen Physiol; 2003 Sep; 122(3):277-93. PubMed ID: 12913090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gating competence of constitutively open CLC-0 mutants revealed by the interaction with a small organic Inhibitor.
    Traverso S; Elia L; Pusch M
    J Gen Physiol; 2003 Sep; 122(3):295-306. PubMed ID: 12913089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent gating of single pores in CLC-0 chloride channels.
    Ludewig U; Pusch M; Jentsch TJ
    Biophys J; 1997 Aug; 73(2):789-97. PubMed ID: 9251795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological characterization of chloride channels belonging to the ClC family by the use of chiral clofibric acid derivatives.
    Pusch M; Liantonio A; Bertorello L; Accardi A; De Luca A; Pierno S; Tortorella V; Camerino DC
    Mol Pharmacol; 2000 Sep; 58(3):498-507. PubMed ID: 10953042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ClC-1 and ClC-2 form hetero-dimeric channels with novel protopore functions.
    Stölting G; Fischer M; Fahlke C
    Pflugers Arch; 2014 Dec; 466(12):2191-204. PubMed ID: 24638271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Channel or transporter? The CLC saga continues.
    Pusch M; Zifarelli G; Murgia AR; Picollo A; Babini E
    Exp Physiol; 2006 Jan; 91(1):149-52. PubMed ID: 16179405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations of pharmacologic properties of the renal CLC-K1 chloride channel co-expressed with barttin by the use of 2-(p-Chlorophenoxy)propionic acid derivatives and other structurally unrelated chloride channels blockers.
    Liantonio A; Pusch M; Picollo A; Guida P; De Luca A; Pierno S; Fracchiolla G; Loiodice F; Tortorella P; Conte Camerino D
    J Am Soc Nephrol; 2004 Jan; 15(1):13-20. PubMed ID: 14694153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of a protein region involved in permeation and gating of the voltage-gated Torpedo chloride channel ClC-0.
    Ludewig U; Jentsch TJ; Pusch M
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):691-702. PubMed ID: 9051580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into chloride and proton-mediated gating of CLC chloride channels.
    Pusch M
    Biochemistry; 2004 Feb; 43(5):1135-44. PubMed ID: 14756549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drastic reduction of the slow gate of human muscle chloride channel (ClC-1) by mutation C277S.
    Accardi A; Ferrera L; Pusch M
    J Physiol; 2001 Aug; 534(Pt 3):745-52. PubMed ID: 11483705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular requisites for drug binding to muscle CLC-1 and renal CLC-K channel revealed by the use of phenoxy-alkyl derivatives of 2-(p-chlorophenoxy)propionic acid.
    Liantonio A; Accardi A; Carbonara G; Fracchiolla G; Loiodice F; Tortorella P; Traverso S; Guida P; Pierno S; De Luca A; Camerino DC; Pusch M
    Mol Pharmacol; 2002 Aug; 62(2):265-71. PubMed ID: 12130677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc inhibits human ClC-1 muscle chloride channel by interacting with its common gating mechanism.
    Duffield MD; Rychkov GY; Bretag AH; Roberts ML
    J Physiol; 2005 Oct; 568(Pt 1):5-12. PubMed ID: 16002443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride dependence of hyperpolarization-activated chloride channel gates.
    Pusch M; Jordt SE; Stein V; Jentsch TJ
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):341-53. PubMed ID: 10050002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The voltage-dependent ClC-2 chloride channel has a dual gating mechanism.
    Zúñiga L; Niemeyer MI; Varela D; Catalán M; Cid LP; Sepúlveda FV
    J Physiol; 2004 Mar; 555(Pt 3):671-82. PubMed ID: 14724195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the gating of CIC-1 by S-(-) 2-(4-chlorophenoxy) propionic acid.
    Aromataris EC; Astill DS; Rychkov GY; Bryant SH; Bretag AH; Roberts ML
    Br J Pharmacol; 1999 Mar; 126(6):1375-82. PubMed ID: 10217531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of fast-gate opening in ClC-0.
    Engh AM; Faraldo-Gómez JD; Maduke M
    J Gen Physiol; 2007 Oct; 130(4):335-49. PubMed ID: 17846164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular zinc ion inhibits ClC-0 chloride channels by facilitating slow gating.
    Chen TY
    J Gen Physiol; 1998 Dec; 112(6):715-26. PubMed ID: 9834141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inward rectification in ClC-0 chloride channels caused by mutations in several protein regions.
    Ludewig U; Jentsch TJ; Pusch M
    J Gen Physiol; 1997 Aug; 110(2):165-71. PubMed ID: 9236209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.