These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 12513122)
1. Rhythmicity of engraftment and altered cell cycle kinetics of cytokine-cultured murine marrow in simulated microgravity compared with static cultures. Colvin GA; Lambert JF; Carlson JE; McAuliffe CI; Abedi M; Quesenberry PJ In Vitro Cell Dev Biol Anim; 2002 Jun; 38(6):343-51. PubMed ID: 12513122 [TBL] [Abstract][Full Text] [Related]
2. Rhinovirus replication in HeLa cells cultured under conditions of simulated microgravity. Long JP; Pierson S; Hughes JH Aviat Space Environ Med; 1998 Sep; 69(9):851-6. PubMed ID: 9737755 [TBL] [Abstract][Full Text] [Related]
3. Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor. Sytkowski AJ; Davis KL In Vitro Cell Dev Biol Anim; 2001 Feb; 37(2):79-83. PubMed ID: 11332741 [TBL] [Abstract][Full Text] [Related]
4. Cytokine modulation of murine stem cell engraftment: the role of adherence to plastic surfaces. Peters SO; Habibian HK; Quesenberry PJ Int J Hematol; 2002 Jul; 76(1):84-90. PubMed ID: 12138902 [TBL] [Abstract][Full Text] [Related]
5. Dynamic culture in a rotating-wall vessel bioreactor differentially inhibits murine T-lymphocyte activation by mitogenic stimuli upon return to static conditions in a time-dependent manner. Simons DM; Gardner EM; Lelkes PI J Appl Physiol (1985); 2006 Apr; 100(4):1287-92. PubMed ID: 16384837 [TBL] [Abstract][Full Text] [Related]
6. Simulated microgravity maintains the undifferentiated state and enhances the neural repair potential of bone marrow stromal cells. Yuge L; Sasaki A; Kawahara Y; Wu SL; Matsumoto M; Manabe T; Kajiume T; Takeda M; Magaki T; Takahashi T; Kurisu K; Matsumoto M Stem Cells Dev; 2011 May; 20(5):893-900. PubMed ID: 20828292 [TBL] [Abstract][Full Text] [Related]
7. Maintenance of Neurogenic Differentiation Potential in Passaged Bone Marrow-Derived Human Mesenchymal Stem Cells Under Simulated Microgravity Conditions. Koaykul C; Kim MH; Kawahara Y; Yuge L; Kino-Oka M Stem Cells Dev; 2019 Dec; 28(23):1552-1561. PubMed ID: 31588849 [TBL] [Abstract][Full Text] [Related]
10. Effect of Culture in Simulated Microgravity on the Development of Mouse Embryonic Testes. Nowacki D; Klinger FG; Mazur G; De Felici M Adv Clin Exp Med; 2015; 24(5):769-74. PubMed ID: 26768626 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved Rotating Wall Vessel bioreactor (RWV). Rucci N; Migliaccio S; Zani BM; Taranta A; Teti A J Cell Biochem; 2002; 85(1):167-79. PubMed ID: 11891860 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Simulated Microgravity and Hydrostatic Pressure for Chondrogenesis of hASC. Mellor LF; Steward AJ; Nordberg RC; Taylor MA; Loboa EG Aerosp Med Hum Perform; 2017 Apr; 88(4):377-384. PubMed ID: 28518000 [TBL] [Abstract][Full Text] [Related]
13. Proliferation of human hematopoietic bone marrow cells in simulated microgravity. Plett PA; Frankovitz SM; Abonour R; Orschell-Traycoff CM In Vitro Cell Dev Biol Anim; 2001 Feb; 37(2):73-8. PubMed ID: 11332740 [TBL] [Abstract][Full Text] [Related]
14. Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells. Plett PA; Abonour R; Frankovitz SM; Orschell CM Exp Hematol; 2004 Aug; 32(8):773-81. PubMed ID: 15308329 [TBL] [Abstract][Full Text] [Related]
15. Microgravity culture reduces apoptosis and increases the differentiation of a human colorectal carcinoma cell line. Jessup JM; Frantz M; Sonmez-Alpan E; Locker J; Skena K; Waller H; Battle P; Nachman A; Bhatti ; Weber ME; Thomas DA; Curbeam RL; Baker TL; Goodwin TJ In Vitro Cell Dev Biol Anim; 2000 Jun; 36(6):367-73. PubMed ID: 10949995 [TBL] [Abstract][Full Text] [Related]
16. Cell behavior in simulated microgravity: a comparison of results obtained with RWV and RPM. Villa A; Versari S; Maier JA; Bradamante S Gravit Space Biol Bull; 2005 Jun; 18(2):89-90. PubMed ID: 16038099 [No Abstract] [Full Text] [Related]
17. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. Schwarz RP; Goodwin TJ; Wolf DA J Tissue Cult Methods; 1992; 14(2):51-7. PubMed ID: 11541102 [TBL] [Abstract][Full Text] [Related]
18. Scalable Microgravity Simulator Used for Long-Term Musculoskeletal Cells and Tissue Engineering. Cazzaniga A; Ille F; Wuest S; Haack C; Koller A; Giger-Lange C; Zocchi M; Egli M; Castiglioni S; Maier JA Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255352 [TBL] [Abstract][Full Text] [Related]
20. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells. Grimm D; Egli M; Krüger M; Riwaldt S; Corydon TJ; Kopp S; Wehland M; Wise P; Infanger M; Mann V; Sundaresan A Stem Cells Dev; 2018 Jun; 27(12):787-804. PubMed ID: 29596037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]