These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 12513381)
1. Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms. Tian H; Li Z; Tian J; Zhou G Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066204. PubMed ID: 12513381 [TBL] [Abstract][Full Text] [Related]
2. Instability criteria and pattern formation in the complex Ginzburg-Landau equation with higher-order terms. Mohamadou A; Ayissi BE; Kofané TC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046604. PubMed ID: 17155189 [TBL] [Abstract][Full Text] [Related]
3. Novel asymmetric representation method for solving the higher-order Ginzburg-Landau equation. Wong P; Pang L; Wu Y; Lei M; Liu W Sci Rep; 2016 Apr; 6():24613. PubMed ID: 27086841 [TBL] [Abstract][Full Text] [Related]
4. Generation of pulse trains in nonlinear optical fibers through the generalized complex Ginzburg-Landau equation. Latchio Tiofack CG; Mohamadou A; Kofané TC; Moubissi AB Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066604. PubMed ID: 20365291 [TBL] [Abstract][Full Text] [Related]
5. Existence and stability of solutions of the cubic complex Ginzburg-Landau equation with delayed Raman scattering. Facão M; Carvalho MI Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022922. PubMed ID: 26382490 [TBL] [Abstract][Full Text] [Related]
6. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. Skarka V; Aleksić NB Phys Rev Lett; 2006 Jan; 96(1):013903. PubMed ID: 16486455 [TBL] [Abstract][Full Text] [Related]
7. Soliton turbulence in the complex Ginzburg-Landau equation. Sakaguchi H Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):017205. PubMed ID: 17677602 [TBL] [Abstract][Full Text] [Related]
8. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach. Akhmediev N; Soto-Crespo JM; Town G Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056602. PubMed ID: 11415026 [TBL] [Abstract][Full Text] [Related]
10. Multistable pulselike solutions in a parametrically driven Ginzburg-Landau equation. Barashenkov IV; Cross S; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056605. PubMed ID: 14682904 [TBL] [Abstract][Full Text] [Related]
11. Static, oscillating modulus, and moving pulses in the one-dimensional quintic complex Ginzburg-Landau equation: an analytical approach. Descalzi O Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046210. PubMed ID: 16383515 [TBL] [Abstract][Full Text] [Related]
12. Front propagation in weakly subcritical pattern-forming systems. Ponedel BC; Kao HC; Knobloch E Phys Rev E; 2017 Sep; 96(3-1):032208. PubMed ID: 29347036 [TBL] [Abstract][Full Text] [Related]
13. Dissipative solitons for generalizations of the cubic complex Ginzburg-Landau equation. Carvalho MI; Facão M Phys Rev E; 2019 Sep; 100(3-1):032222. PubMed ID: 31640072 [TBL] [Abstract][Full Text] [Related]
14. Collisions of pulses can lead to holes via front interaction in the cubic-quintic complex Ginzburg-Landau equation in an annular geometry. Descalzi O; Cisternas J; Brand HR Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):065201. PubMed ID: 17280110 [TBL] [Abstract][Full Text] [Related]
15. Moving breathing pulses in the one-dimensional complex cubic-quintic Ginzburg-Landau equation. Gutiérrez P; Escaff D; Pérez-Oyarzún S; Descalzi O Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):037202. PubMed ID: 19905250 [TBL] [Abstract][Full Text] [Related]
16. Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation. Gutiérrez P; Escaff D; Descalzi O Philos Trans A Math Phys Eng Sci; 2009 Aug; 367(1901):3227-38. PubMed ID: 19620120 [TBL] [Abstract][Full Text] [Related]
17. Stabilization of dark solitons in the cubic ginzburg-landau equation. Efremidis N; Hizanidis K; Nistazakis HE; Frantzeskakis DJ; Malomed BA Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):7410-4. PubMed ID: 11102102 [TBL] [Abstract][Full Text] [Related]
18. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. Tsoy EN; Ankiewicz A; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036621. PubMed ID: 16605691 [TBL] [Abstract][Full Text] [Related]
19. Influence of Dirichlet boundary conditions on dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation. Descalzi O; Brand HR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026210. PubMed ID: 20365641 [TBL] [Abstract][Full Text] [Related]
20. Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients. Hao R; Li L; Li Z; Zhou G Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066603. PubMed ID: 15697522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]