These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12513411)

  • 1. Laser-generated plasma plume expansion: combined continuous-microscopic modeling.
    Itina TE; Hermann J; Delaporte P; Sentis M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066406. PubMed ID: 12513411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of gas dynamics for a laser-generated plasma: propagation into low-pressure gases.
    Le HC; Zeitoun DE; Parisse JD; Sentis M; Marine W
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):4152-61. PubMed ID: 11088944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plume Dynamics of Laser-Produced Swine Muscle Tissue Plasma.
    Camacho JJ; Diaz L; Marin-Roldan A; Moncayo S; Caceres JO
    Appl Spectrosc; 2016 Jul; 70(7):1228-38. PubMed ID: 27301327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and computational investigation into the hydrodynamics and chemical dynamics of laser ablation aluminum plasmas.
    Kwapis EH; Posey JW; Medici E; Berg K; Houim RW; Hartig KC
    Phys Chem Chem Phys; 2023 Jun; 25(23):15666-15675. PubMed ID: 37254675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow.
    Amoruso S; Toftmann B; Schou J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056403. PubMed ID: 15244947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of laser-ablated carbon plasma: formation of C2 and CN.
    Kushwaha A; Thareja RK
    Appl Opt; 2008 Nov; 47(31):G65-71. PubMed ID: 19122704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early plume expansion in atmospheric pressure midinfrared laser ablation of water-rich targets.
    Chen Z; Vertes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036316. PubMed ID: 18517520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas.
    Harilal SS; Brumfield BE; Cannon BD; Phillips MC
    Anal Chem; 2016 Feb; 88(4):2296-302. PubMed ID: 26732866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of ambient gas pressure on excitation radiation mechanism in pulsed laser ablation of copper].
    Huang QJ; Fang ET
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):585-8. PubMed ID: 19455778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic study on the enhanced excitation of an electron cyclotron resonance nitrogen plasma by pulsed laser ablation of an aluminum target.
    Tang JY; Zhang W; Sun J; Xu N; Ge C; Wu JD
    Appl Spectrosc; 2008 Nov; 62(11):1256-61. PubMed ID: 19007469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined thermal and gas dynamics numerical model for laser ablation of carbon.
    Pathak K; Mullenix N; Povitsky A
    J Nanosci Nanotechnol; 2006 May; 6(5):1271-80. PubMed ID: 16792353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced sensitivity and metabolite coverage with remote laser ablation electrospray ionization-mass spectrometry aided by coaxial plume and gas dynamics.
    Fincher JA; Korte AR; Reschke B; Morris NJ; Powell MJ; Vertes A
    Analyst; 2017 Aug; 142(17):3157-3164. PubMed ID: 28678241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air.
    Wu B; Shin YC; Pakhal H; Laurendeau NM; Lucht RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026405. PubMed ID: 17930160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion of a collisionless hypersonic plasma plume into a vacuum.
    Hu Y; Wang J
    Phys Rev E; 2018 Aug; 98(2-1):023204. PubMed ID: 30253551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic modeling and characterization of a collisionally confined laser-ablated plasma plume.
    Sherrill ME; Mancini RC; Bailey J; Filuk A; Clark B; Lake P; Abdallah J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056401. PubMed ID: 18233770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure effects in laser-induced plasmas of trinitrotoluene and pyrene by laser-induced breakdown spectroscopy (LIBS).
    Delgado T; Vadillo JM; Laserna JJ
    Appl Spectrosc; 2014; 68(1):33-8. PubMed ID: 24405951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed camera imaging for laser ablation process: for further reliable elemental analysis using inductively coupled plasma-mass spectrometry.
    Hirata T; Miyazaki Z
    Anal Chem; 2007 Jan; 79(1):147-52. PubMed ID: 17194132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutral atomic jet generation by laser ablation of copper targets.
    de Matos JB; Destro MG; da Silveira CA; Rodrigues NA
    Rev Sci Instrum; 2014 Aug; 85(8):083505. PubMed ID: 25173267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Investigation of a jet operated in atmospheric pressure argon by optical emission spectroscopy].
    Li XC; Bao WT; Jia PY; Di C; Yuan N
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1469-72. PubMed ID: 25358147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plume composition and evolution in multicomponent ices using resonant two-step laser ablation and ionization mass spectrometry.
    Henderson BL; Gudipati MS
    J Phys Chem A; 2014 Jul; 118(29):5454-63. PubMed ID: 24990519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.