These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12513491)

  • 1. Rotation due to hydrodynamic interactions between two spheres in contact.
    Ekiel-Jezewska ML; Lecoq N; Anthore R; Bostel F; Feuillebois F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051504. PubMed ID: 12513491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between two touching spherical particles in sedimentation.
    Sun R; Chwang AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046316. PubMed ID: 17995115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation of frictional particles due to capillary attraction.
    Dalbe MJ; Cosic D; Berhanu M; Kudrolli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051403. PubMed ID: 21728530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-solid contacts due to surface roughness and their effects on suspension behaviour.
    Davis RH; Zhao Y; Galvin KP; Wilson HJ
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):871-94. PubMed ID: 12804219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoting rotation, friction, and mixed lubrication for particles rolling on microstructured surfaces.
    Ryu BK; Hommel RJ; Roberts P; Fréchette J
    Phys Rev E; 2019 Feb; 99(2-1):022802. PubMed ID: 30934236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angular particle sliding down a transversally vibrated smooth plane.
    Benedetti A; Sornay P; Dalloz B; Nicolas M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011307. PubMed ID: 22400565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulation of cooperative hydrodynamic effects in motion of a periodic array of spheres between parallel walls.
    Kohale SC; Khare R
    J Chem Phys; 2008 Oct; 129(16):164706. PubMed ID: 19045297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the Rolling Friction Coefficient between Dissimilar Materials through the Motion of a Conical Pendulum.
    Alaci S; Muscă I; Pentiuc ȘG
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33171586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rolling Spheres on Bioinspired Microstructured Surfaces.
    Ryu BK; Dhong C; Fréchette J
    Langmuir; 2017 Jan; 33(1):164-175. PubMed ID: 27959562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculating the rotational friction coefficient of fractal aerosol particles in the transition regime using extended Kirkwood-Riseman theory.
    Corson J; Mulholland GW; Zachariah MR
    Phys Rev E; 2017 Jul; 96(1-1):013110. PubMed ID: 29347146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrohydrodynamic interaction of spherical particles under Quincke rotation.
    Das D; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043014. PubMed ID: 23679520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translation and rotation of slightly deformed colloidal spheres experiencing slip.
    Chang YC; Keh HJ
    J Colloid Interface Sci; 2009 Feb; 330(1):201-10. PubMed ID: 19012900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward an Accurate Modeling of Hydrodynamic Effects on the Translational and Rotational Dynamics of Biomolecules in Many-Body Systems.
    Długosz M; Antosiewicz JM
    J Phys Chem B; 2015 Jul; 119(26):8425-39. PubMed ID: 26068580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Friction phenomena and their impact on the shear behaviour of granular material.
    Suhr B; Six K
    Comput Part Mech; 2017; 4(1):23-34. PubMed ID: 28133590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear shear wave interaction at a frictional interface: energy dissipation and generation of harmonics.
    Meziane A; Norris AN; Shuvalov AL
    J Acoust Soc Am; 2011 Oct; 130(4):1820-8. PubMed ID: 21973335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion of a sphere through a polymer solution.
    Fan TH; Dhont JK; Tuinier R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011803. PubMed ID: 17358176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of rotational and translational energy exchange on tracer diffusion in rough hard sphere fluids.
    Kravchenko O; Thachuk M
    J Chem Phys; 2011 Mar; 134(11):114310. PubMed ID: 21428622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sedimentation of spheres at small Reynolds number.
    Felderhof BU
    J Chem Phys; 2005 Jun; 122(21):214905. PubMed ID: 15974788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic description of the long-time tails of the linear and rotational velocity autocorrelation functions of a particle in a confined geometry.
    Frydel D; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061404. PubMed ID: 18233847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density-induced coupling effects on the dispersivity of a flexible chain particle.
    Van Dyke M; Haber S
    J Chem Phys; 2004 Jun; 120(22):10815-27. PubMed ID: 15268109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.