These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12513528)

  • 1. Adsorption of a random copolymer at a lipid bilayer membrane.
    Ermoshkin AV; Chen JZ; Lai PY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051912. PubMed ID: 12513528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics study of peptide-bilayer adsorption.
    Shepherd CM; Schaus KA; Vogel HJ; Juffer AH
    Biophys J; 2001 Feb; 80(2):579-96. PubMed ID: 11159427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties.
    Schwieger C; Achilles A; Scholz S; Rüger J; Bacia K; Saalwaechter K; Kressler J; Blume A
    Soft Matter; 2014 Sep; 10(33):6147-60. PubMed ID: 24942348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiflexible polymers confined in soft tubes.
    Brochard-Wyart F; Tanaka T; Borghi N; de Gennes PG
    Langmuir; 2005 Apr; 21(9):4144-8. PubMed ID: 15835986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid bilayer perturbations around a transmembrane nanotube: a coarse grain molecular dynamics study.
    Nielsen SO; Ensing B; Ortiz V; Moore PB; Klein ML
    Biophys J; 2005 Jun; 88(6):3822-8. PubMed ID: 15778436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translocation and induced permeability of random amphiphilic copolymers interacting with lipid bilayer membranes.
    Werner M; Sommer JU
    Biomacromolecules; 2015 Jan; 16(1):125-35. PubMed ID: 25539014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of a hydrophobic-polar-model heteropolymer in an attractive nanotube.
    Arkin H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041910. PubMed ID: 19905345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of binding and permeation of ether-based polymers through interfaces.
    Samanta S; Hezaveh S; Roccatano D
    J Phys Chem B; 2013 Nov; 117(47):14723-31. PubMed ID: 24219592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle-induced permeability of lipid membranes.
    Pogodin S; Werner M; Sommer JU; Baulin VA
    ACS Nano; 2012 Dec; 6(12):10555-61. PubMed ID: 23128273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charged microcapsules for controlled release of hydrophobic actives Part II: surface modification by LbL adsorption and lipid bilayer formation on properly anchored dispersant layers.
    Trojer MA; Li Y; Wallin M; Holmberg K; Nydén M
    J Colloid Interface Sci; 2013 Nov; 409():8-17. PubMed ID: 23928487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of inclusion-induced bilayer deformations.
    Nielsen C; Goulian M; Andersen OS
    Biophys J; 1998 Apr; 74(4):1966-83. PubMed ID: 9545056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of formation of a supported phospholipid bilayer from vesicles on SiO2.
    Reimhult E; Höök F; Kasemo B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051905. PubMed ID: 12513521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings.
    Zhang L; Becton M; Wang X
    J Phys Chem B; 2015 Mar; 119(9):3786-94. PubMed ID: 25675048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and stabilization of pores in bilayer membranes by peptide-like amphiphilic polymers.
    Checkervarty A; Werner M; Sommer JU
    Soft Matter; 2018 Mar; 14(13):2526-2534. PubMed ID: 29537426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomolecule surface patterning may enhance membrane association.
    Pogodin S; Slater NK; Baulin VA
    ACS Nano; 2012 Feb; 6(2):1308-13. PubMed ID: 22239824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of lipid characteristics on the structure of transmembrane proteins.
    Dan N; Safran SA
    Biophys J; 1998 Sep; 75(3):1410-4. PubMed ID: 9726942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of pH-sensitive copolymer/phospholipid complexes using the langmuir balance technique: effect of anchoring sequence and copolymer molecular weight.
    Pétriat F; Giasson S
    Langmuir; 2005 Aug; 21(16):7326-34. PubMed ID: 16042462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures.
    Morigaki K; Mizutani K; Saito M; Okazaki T; Nakajima Y; Tatsu Y; Imaishi H
    Langmuir; 2013 Feb; 29(8):2722-30. PubMed ID: 23347422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch.
    Fattal DR; Ben-Shaul A
    Biophys J; 1993 Nov; 65(5):1795-809. PubMed ID: 8298013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of ethylene oxide containing lipopolymers and tri-block copolymers on lipid bilayers of dipalmitoylphosphatidylcholine.
    Baekmark TR; Pedersen S; Jørgensen K; Mouritsen OG
    Biophys J; 1997 Sep; 73(3):1479-91. PubMed ID: 9284315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.