These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12513540)

  • 1. Mechanism for membrane electroporation irreversibility under high-intensity, ultrashort electrical pulse conditions.
    Joshi RP; Schoenbach KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):052901. PubMed ID: 12513540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroporation of intracellular liposomes using nanosecond electric pulses--a theoretical study.
    Retelj L; Pucihar G; Miklavcic D
    IEEE Trans Biomed Eng; 2013 Sep; 60(9):2624-35. PubMed ID: 23674414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
    Vasilkoski Z; Esser AT; Gowrishankar TR; Weaver JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021904. PubMed ID: 17025469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse.
    Hu Q; Viswanadham S; Joshi RP; Schoenbach KH; Beebe SJ; Blackmore PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031914. PubMed ID: 15903466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-landscape-model analysis for irreversibility and its pulse-width dependence in cells subjected to a high-intensity ultrashort electric pulse.
    Joshi RP; Hu Q; Schoenbach KH; Beebe SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051901. PubMed ID: 15244841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Case for applying subnanosecond high-intensity, electrical pulses to biological cells.
    Joshi RP; Hu Q
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2860-6. PubMed ID: 21937300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of a large pore subpopulation during electroporating pulses.
    Smith KC; Son RS; Gowrishankar TR; Weaver JC
    Bioelectrochemistry; 2014 Dec; 100():3-10. PubMed ID: 24290730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model of creation and evolution of stable electropores for DNA delivery.
    Smith KC; Neu JC; Krassowska W
    Biophys J; 2004 May; 86(5):2813-26. PubMed ID: 15111399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Study of Pore Formation Energy by High Intensity, Nanosecond Electrical Pulse.
    Qiu H; Wang X; Choi A; Zhao W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5721-5724. PubMed ID: 30441635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics and control of the two-pulse protocol in electroporation: numerical exploration.
    Jiang W; Zhao X
    Math Biosci; 2011 Jul; 232(1):24-30. PubMed ID: 21447348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse.
    Hu Q; Joshi RP; Schoenbach KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031902. PubMed ID: 16241477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the electrostatic field strength at the site of exocytosis in adrenal chromaffin cells.
    Rosenheck K
    Biophys J; 1998 Sep; 75(3):1237-43. PubMed ID: 9726926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation.
    Gowrishankar TR; Weaver JC
    Biochem Biophys Res Commun; 2006 Oct; 349(2):643-53. PubMed ID: 16959217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioelectrorheological model of the cell. VI. Experimental verification of the rheological model of cytoplasmic membrane.
    Pawlowski P; Szutowicz I; Rózycki S; Zieliński J; Fikus M
    Biophys J; 1996 Feb; 70(2):1024-6. PubMed ID: 8789120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of intense, subnanosecond electrical pulse-induced transmembrane voltage in spheroidal cells with arbitrary orientation.
    Hu Q; Joshi RP
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1617-26. PubMed ID: 19258194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research progress of nanosecond pulsed electric field applied to intracellular electromanipulation].
    Yao C; Mo D; Sun C; Chen X; Xiong Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1206-9. PubMed ID: 19024477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroporation of cell membranes.
    Tsong TY
    Biophys J; 1991 Aug; 60(2):297-306. PubMed ID: 1912274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical modelling of electroporation in close cell-to-cell proximity environments.
    Gaynor PT; Bodger PS
    Phys Med Biol; 2006 Jun; 51(12):3175-88. PubMed ID: 16757870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning.
    Neal RE; Garcia PA; Robertson JL; Davalos RV
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1076-85. PubMed ID: 22231669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamically stabilized pores in bilayer membranes.
    Moroz JD; Nelson P
    Biophys J; 1997 May; 72(5):2211-6. PubMed ID: 9129823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.