These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 12513596)

  • 1. Unified lattice Boltzmann method for flow in multiscale porous media.
    Kang Q; Zhang D; Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056307. PubMed ID: 12513596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures.
    Agnaou M; Lasseux D; Ahmadi A
    Phys Rev E; 2017 Oct; 96(4-1):043105. PubMed ID: 29347623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice Boltzmann models for flow and transport in saturated karst.
    Anwar S; Sukop MC
    Ground Water; 2009; 47(3):401-13. PubMed ID: 19016892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice Boltzmann model for incompressible flows through porous media.
    Guo Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036304. PubMed ID: 12366250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg's effect.
    Chen L; Fang W; Kang Q; De'Haven Hyman J; Viswanathan HS; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033004. PubMed ID: 25871199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels.
    Li R; Yang YS; Pan J; Pereira GG; Taylor JA; Clennell B; Zou C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033301. PubMed ID: 25314558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-volume method with lattice Boltzmann flux scheme for incompressible porous media flow at the representative-elementary-volume scale.
    Hu Y; Li D; Shu S; Niu X
    Phys Rev E; 2016 Feb; 93(2):023308. PubMed ID: 26986440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media.
    Ginzburg I; Silva G; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023307. PubMed ID: 25768636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domain-decomposition method for parallel lattice Boltzmann simulation of incompressible flow in porous media.
    Wang J; Zhang X; Bengough AG; Crawford JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016706. PubMed ID: 16090133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore-scale investigation of viscous coupling effects for two-phase flow in porous media.
    Li H; Pan C; Miller CT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026705. PubMed ID: 16196749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separate-phase model and its lattice Boltzmann algorithm for liquid-vapor two-phase flows in porous media.
    Lei S; Shi Y
    Phys Rev E; 2019 May; 99(5-1):053302. PubMed ID: 31212493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.
    Mukhopadhyay S; Liu HH; Spycher N; Kennedy BM
    J Contam Hydrol; 2013 Nov; 154():42-52. PubMed ID: 24077359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice Boltzmann heat transfer model for permeable voxels.
    Pereira GG; Wu B; Ahmed S
    Phys Rev E; 2017 Dec; 96(6-1):063108. PubMed ID: 29347372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.
    Widmer RP; Ferguson SJ
    J Biomech Eng; 2011 May; 133(5):051007. PubMed ID: 21599098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice Boltzmann Model for Gas Flow through Tight Porous Media with Multiple Mechanisms.
    Ren J; Zheng Q; Guo P; Zhao C
    Entropy (Basel); 2019 Feb; 21(2):. PubMed ID: 33266849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal convection in three-dimensional fractured porous media.
    Mezon C; Mourzenko VV; Thovert JF; Antoine R; Fontaine F; Finizola A; Adler PM
    Phys Rev E; 2018 Jan; 97(1-1):013106. PubMed ID: 29448384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media.
    Love PJ; Maillet JB; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 1):061302. PubMed ID: 11736175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas slippage effect on microscale porous flow using the lattice Boltzmann method.
    Tang GH; Tao WQ; He YL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056301. PubMed ID: 16383739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation.
    Wu M; Xiao F; Johnson-Paben RM; Retterer ST; Yin X; Neeves KB
    Lab Chip; 2012 Jan; 12(2):253-61. PubMed ID: 22094719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient 3D cell-based discrete fracture-matrix flow model for digitally captured fracture networks.
    Sun L; Li M; Abdelaziz A; Tang X; Liu Q; Grasselli G
    Int J Coal Sci Technol; 2023; 10(1):70. PubMed ID: 37928133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.