These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 12513635)
1. Coarse-grained loop algorithms for Monte Carlo simulation of quantum spin systems. Harada K; Kawashima N Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056705. PubMed ID: 12513635 [TBL] [Abstract][Full Text] [Related]
2. Multidiscontinuity algorithm for world-line Monte Carlo simulations. Kato Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013310. PubMed ID: 23410463 [TBL] [Abstract][Full Text] [Related]
3. Valence-bond quantum Monte Carlo algorithms defined on trees. Deschner A; Sørensen ES Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033304. PubMed ID: 25314561 [TBL] [Abstract][Full Text] [Related]
4. Short-loop algorithm for quantum Monte Carlo simulations. Kao YJ; Melko RG Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036708. PubMed ID: 18517558 [TBL] [Abstract][Full Text] [Related]
5. Coarse-grained Monte Carlo simulations of non-equilibrium systems. Liu X; Crocker JC; Sinno T J Chem Phys; 2013 Jun; 138(24):244111. PubMed ID: 23822231 [TBL] [Abstract][Full Text] [Related]
6. Efficient and robust quantum Monte Carlo estimate of the total and spin electron densities at nuclei. Håkansson P; Mella M J Chem Phys; 2008 Sep; 129(12):124101. PubMed ID: 19045000 [TBL] [Abstract][Full Text] [Related]
7. Simulation of the time evolution of the Wigner function with a first-principles Monte Carlo method. Torres MS; Tosi G; Figueiredo JM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036701. PubMed ID: 19905240 [TBL] [Abstract][Full Text] [Related]
8. Coarse-grained lattice Monte Carlo simulations with continuous interaction potentials. Liu X; Seider WD; Sinno T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026708. PubMed ID: 23005883 [TBL] [Abstract][Full Text] [Related]
9. Generalized directed loop method for quantum Monte Carlo simulations. Alet F; Wessel S; Troyer M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036706. PubMed ID: 15903632 [TBL] [Abstract][Full Text] [Related]
10. Testing a new Monte Carlo algorithm for protein folding. Bastolla U; Frauenkron H; Gerstner E; Grassberger P; Nadler W Proteins; 1998 Jul; 32(1):52-66. PubMed ID: 9672042 [TBL] [Abstract][Full Text] [Related]
11. Directed loop updates for quantum lattice models. Syljuåsen OF Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046701. PubMed ID: 12786523 [TBL] [Abstract][Full Text] [Related]
12. Quantum Monte Carlo algorithm for softcore boson systems. Smakov J; Harada K; Kawashima N Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046708. PubMed ID: 14683080 [TBL] [Abstract][Full Text] [Related]
13. A general method for spatially coarse-graining Metropolis Monte Carlo simulations onto a lattice. Liu X; Seider WD; Sinno T J Chem Phys; 2013 Mar; 138(11):114104. PubMed ID: 23534624 [TBL] [Abstract][Full Text] [Related]
14. Path-integral Monte Carlo method for the local Z2 Berry phase. Motoyama Y; Todo S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):021301. PubMed ID: 23496453 [TBL] [Abstract][Full Text] [Related]
15. First example of multi-scale reverse Monte Carlo modeling for small-angle scattering experimental data using reverse mapping from coarse-grained particles to atoms. Hagita K; McGreevy RL; Arai T; Inui M; Matsuda K; Tamura K J Phys Condens Matter; 2010 Oct; 22(40):404215. PubMed ID: 21386576 [TBL] [Abstract][Full Text] [Related]
16. Efficient Monte Carlo algorithm in quasi-one-dimensional Ising spin systems. Nakamura T Phys Rev Lett; 2008 Nov; 101(21):210602. PubMed ID: 19113399 [TBL] [Abstract][Full Text] [Related]
17. Generalized event-chain Monte Carlo: constructing rejection-free global-balance algorithms from infinitesimal steps. Michel M; Kapfer SC; Krauth W J Chem Phys; 2014 Feb; 140(5):054116. PubMed ID: 24511931 [TBL] [Abstract][Full Text] [Related]
18. Geometric allocation approach to accelerating directed worm algorithm. Suwa H Phys Rev E; 2021 Jan; 103(1-1):013308. PubMed ID: 33601561 [TBL] [Abstract][Full Text] [Related]
19. Directed geometrical worm algorithm applied to the quantum rotor model. Alet F; Sørensen ES Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026702. PubMed ID: 14525143 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo simulation of DNMR spectra of coupled spin systems. Szalay Z; Rohonczy J J Magn Reson; 2008 Mar; 191(1):56-65. PubMed ID: 18162425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]