These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 12513636)

  • 1. Sweeny and Gliozzi dynamics for simulations of Potts models in the Fortuin-Kasteleyn representation.
    Wang JS; Kozan O; Swendsen RH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):057101. PubMed ID: 12513636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient simulation of the random-cluster model.
    Elçi EM; Weigel M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033303. PubMed ID: 24125381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Percolation effects in the Fortuin-Kasteleyn Ising model on the complete graph.
    Fang S; Zhou Z; Deng Y
    Phys Rev E; 2021 Jan; 103(1-1):012102. PubMed ID: 33601530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Percolation of Fortuin-Kasteleyn clusters for the random-bond Ising model.
    Fajen H; Hartmann AK; Young AP
    Phys Rev E; 2020 Jul; 102(1-1):012131. PubMed ID: 32795066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical behavior of the Chayes-Machta-Swendsen-Wang dynamics.
    Deng Y; Garoni TM; Machta J; Ossola G; Polin M; Sokal AD
    Phys Rev Lett; 2007 Aug; 99(5):055701. PubMed ID: 17930769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical speeding-up in the local dynamics of the random-cluster model.
    Deng Y; Garoni TM; Sokal AD
    Phys Rev Lett; 2007 Jun; 98(23):230602. PubMed ID: 17677892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical Binder cumulant and universality: Fortuin-Kasteleyn clusters and order-parameter fluctuations.
    Malakis A; Fytas NG; Gülpinar G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042103. PubMed ID: 24827189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical dynamics of cluster algorithms in the random-bond Ising model.
    Kanbur U; Vatansever ZD
    Phys Rev E; 2024 Feb; 109(2-1):024140. PubMed ID: 38491603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cluster algorithm for potts models with fixed spin densities.
    Bikker RP; Barkema GT
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5830-4. PubMed ID: 11089143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invaded cluster algorithm for a tricritical point in a diluted Potts model.
    Balog I; Uzelac K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011103. PubMed ID: 17677406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red-bond exponents of the critical and the tricritical Ising model in three dimensions.
    Deng Y; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056132. PubMed ID: 15600717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming the slowing down of flat-histogram Monte Carlo simulations: cluster updates and optimized broad-histogram ensembles.
    Wu Y; Körner M; Colonna-Romano L; Trebst S; Gould H; Machta J; Troyer M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046704. PubMed ID: 16383564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical critical behavior of the two-dimensional three-state Potts model.
    Vatansever E; Barkema GT; Fytas NG
    Phys Rev E; 2024 Jul; 110(1-1):014135. PubMed ID: 39161001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of cluster algorithms for the bond-diluted Ising model.
    Kole AH; Barkema GT; Fritz L
    Phys Rev E; 2022 Jan; 105(1-2):015313. PubMed ID: 35193318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q.
    Kim SY; Creswick RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066107. PubMed ID: 11415173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cluster dynamics for the random-cluster model.
    Deng Y; Qian X; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036707. PubMed ID: 19905246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universality of the crossing probability for the Potts model for q=1, 2, 3, 4.
    Vasilyev OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026125. PubMed ID: 14525067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of partition functions by measuring component distributions.
    Hartmann AK
    Phys Rev Lett; 2005 Feb; 94(5):050601. PubMed ID: 15783622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backbone and shortest-path exponents of the two-dimensional Q-state Potts model.
    Fang S; Ke D; Zhong W; Deng Y
    Phys Rev E; 2022 Apr; 105(4-1):044122. PubMed ID: 35590541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical exponents for the homology of Fortuin-Kasteleyn clusters on a torus.
    Morin-Duchesne A; Saint-Aubin Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021130. PubMed ID: 19792100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.