BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12513695)

  • 1. 3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin.
    Li W; Yuan XM; Ivanova S; Tracey KJ; Eaton JW; Brunk UT
    Biochem J; 2003 Apr; 371(Pt 2):429-36. PubMed ID: 12513695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-Aminopropanal is a lysosomotropic aldehyde that causes oxidative stress and apoptosis by rupturing lysosomes.
    Yu Z; Li W; Brunk UT
    APMIS; 2003 Jun; 111(6):643-52. PubMed ID: 12969020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human neuroblastoma (SH-SY5Y) cells are highly sensitive to the lysosomotropic aldehyde 3-aminopropanal.
    Yu Z; Li W; Hillman J; Brunk UT
    Brain Res; 2004 Aug; 1016(2):163-9. PubMed ID: 15246852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The concept of "aldehyde load" in neurodegenerative mechanisms: cytotoxicity of the polyamine degradation products hydrogen peroxide, acrolein, 3-aminopropanal, 3-acetamidopropanal and 4-aminobutanal in a retinal ganglion cell line.
    Wood PL; Khan MA; Moskal JR
    Brain Res; 2007 May; 1145():150-6. PubMed ID: 17362887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral ischemia enhances polyamine oxidation: identification of enzymatically formed 3-aminopropanal as an endogenous mediator of neuronal and glial cell death.
    Ivanova S; Botchkina GI; Al-Abed Y; Meistrell M; Batliwalla F; Dubinsky JM; Iadecola C; Wang H; Gregersen PK; Eaton JW; Tracey KJ
    J Exp Med; 1998 Jul; 188(2):327-40. PubMed ID: 9670045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroprotection in cerebral ischemia by neutralization of 3-aminopropanal.
    Ivanova S; Batliwalla F; Mocco J; Kiss S; Huang J; Mack W; Coon A; Eaton JW; Al-Abed Y; Gregersen PK; Shohami E; Connolly ES; Tracey KJ
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5579-84. PubMed ID: 11943872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aldehyde load in ischemia-reperfusion brain injury: neuroprotection by neutralization of reactive aldehydes with phenelzine.
    Wood PL; Khan MA; Moskal JR; Todd KG; Tanay VA; Baker G
    Brain Res; 2006 Nov; 1122(1):184-90. PubMed ID: 17026969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotoxicity of reactive aldehydes: the concept of "aldehyde load" as demonstrated by neuroprotection with hydroxylamines.
    Wood PL; Khan MA; Kulow SR; Mahmood SA; Moskal JR
    Brain Res; 2006 Jun; 1095(1):190-9. PubMed ID: 16730673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysosomotropic compounds and spermine enzymatic oxidation products in cancer therapy (review).
    Agostinelli E; Seiler N
    Int J Oncol; 2007 Sep; 31(3):473-84. PubMed ID: 17671672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high content screening assay for identifying lysosomotropic compounds.
    Nadanaciva S; Lu S; Gebhard DF; Jessen BA; Pennie WD; Will Y
    Toxicol In Vitro; 2011 Apr; 25(3):715-23. PubMed ID: 21184822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysosomal membrane damage in soluble Abeta-mediated cell death in Alzheimer's disease.
    Ditaranto K; Tekirian TL; Yang AJ
    Neurobiol Dis; 2001 Feb; 8(1):19-31. PubMed ID: 11162237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak.
    Brunk UT; Svensson I
    Redox Rep; 1999; 4(1-2):3-11. PubMed ID: 10714269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postischemic treatment of neonatal cerebral ischemia should target autophagy.
    Puyal J; Vaslin A; Mottier V; Clarke PG
    Ann Neurol; 2009 Sep; 66(3):378-89. PubMed ID: 19551849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitization of human colon adenocarcinoma cells (LoVo) to reactive oxygen species by a lysosomotropic compound.
    Agostinelli E; Vedova LD; Belli F; Condello M; Arancia G; Seiler N
    Int J Oncol; 2006 Oct; 29(4):947-55. PubMed ID: 16964390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes.
    Lovejoy DB; Jansson PJ; Brunk UT; Wong J; Ponka P; Richardson DR
    Cancer Res; 2011 Sep; 71(17):5871-80. PubMed ID: 21750178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity.
    Thibodeau MS; Giardina C; Knecht DA; Helble J; Hubbard AK
    Toxicol Sci; 2004 Jul; 80(1):34-48. PubMed ID: 15056807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant and lysosomotropic properties of acridine-propranolol: protection against oxidative endothelial cell injury.
    Dickens BF; Weglicki WB; Boehme PA; Mak TI
    J Mol Cell Cardiol; 2002 Feb; 34(2):129-37. PubMed ID: 11851353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bismuth-induced lysosomal rupture in J774 cells.
    Stoltenberg M; Larsen A; Zhao M; Danscher G; Brunk UT
    APMIS; 2002 May; 110(5):396-402. PubMed ID: 12076257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysosomal rupture, necroapoptotic interactions and potential crosstalk between cysteine proteases in neurons shortly after focal ischemia.
    Kilinc M; Gürsoy-Ozdemir Y; Gürer G; Erdener SE; Erdemli E; Can A; Dalkara T
    Neurobiol Dis; 2010 Oct; 40(1):293-302. PubMed ID: 20600913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new lactoferrin- and iron-dependent lysosomal death pathway is induced by benzo[a]pyrene in hepatic epithelial cells.
    Gorria M; Tekpli X; Rissel M; Sergent O; Huc L; Landvik N; Fardel O; Dimanche-Boitrel MT; Holme JA; Lagadic-Gossmann D
    Toxicol Appl Pharmacol; 2008 Apr; 228(2):212-24. PubMed ID: 18255115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.