These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12513973)

  • 1. Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose.
    Trindade MI; Abratt VR; Reid SJ
    Appl Environ Microbiol; 2003 Jan; 69(1):24-32. PubMed ID: 12513973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of the sucrase gene of Staphylococcus xylosus by the repressor ScrR.
    Gering M; Brückner R
    J Bacteriol; 1996 Jan; 178(2):462-9. PubMed ID: 8550467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization.
    Kullin B; Abratt VR; Reid SJ
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):975-81. PubMed ID: 16523284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of sucrose phosphorylase and scrR, a regulator of sucrose metabolism in Lactobacillus reuteri.
    Teixeira JS; Abdi R; Su MS; Schwab C; Gänzle MG
    Food Microbiol; 2013 Dec; 36(2):432-9. PubMed ID: 24010626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon.
    Reid SJ; Rafudeen MS; Leat NG
    Microbiology (Reading); 1999 Jun; 145 ( Pt 6)():1461-1472. PubMed ID: 10411273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription of two adjacent carbohydrate utilization gene clusters in Bifidobacterium breve UCC2003 is controlled by LacI- and repressor open reading frame kinase (ROK)-type regulators.
    O'Connell KJ; Motherway MO; Liedtke A; Fitzgerald GF; Paul Ross R; Stanton C; Zomer A; van Sinderen D
    Appl Environ Microbiol; 2014 Jun; 80(12):3604-14. PubMed ID: 24705323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and heterologous expression of the oxalyl coenzyme A decarboxylase gene from Bifidobacterium lactis.
    Federici F; Vitali B; Gotti R; Pasca MR; Gobbi S; Peck AB; Brigidi P
    Appl Environ Microbiol; 2004 Sep; 70(9):5066-73. PubMed ID: 15345383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the gene for beta-fructofuranosidase of Bifidobacterium lactis DSM10140(T) and characterization of the enzyme expressed in Escherichia coli.
    Ehrmann MA; Korakli M; Vogel RF
    Curr Microbiol; 2003 Jun; 46(6):391-7. PubMed ID: 12732943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and expression of sucrose phosphorylase gene from Bifidobacterium longum in E. coli and characterization of the recombinant enzyme.
    Kim M; Kwon T; Lee HJ; Kim KH; Chung DK; Ji GE; Byeon ES; Lee JH
    Biotechnol Lett; 2003 Aug; 25(15):1211-7. PubMed ID: 14514069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of enzyme IIscr and sucrose-6-phosphate hydrolase activities in Streptococcus mutans by transcriptional repressor ScrR binding to the cis-active determinants of the scr regulon.
    Wang B; Kuramitsu HK
    J Bacteriol; 2003 Oct; 185(19):5791-9. PubMed ID: 13129950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation and characterization of a novel beta-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003.
    Ryan SM; Fitzgerald GF; van Sinderen D
    Appl Environ Microbiol; 2005 Jul; 71(7):3475-82. PubMed ID: 16000751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of bifidobacterial promoters in Bifidobacterium longum and Escherichia coli using the α-galactosidase gene as a reporter.
    Sakanaka M; Tamai S; Hirayama Y; Onodera A; Koguchi H; Kano Y; Yokota A; Fukiya S
    J Biosci Bioeng; 2014 Nov; 118(5):489-95. PubMed ID: 24932968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures.
    Neubauer H; Bauché A; Mollet B
    Microbiology (Reading); 2003 Apr; 149(Pt 4):973-982. PubMed ID: 12686639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression.
    Parche S; Beleut M; Rezzonico E; Jacobs D; Arigoni F; Titgemeyer F; Jankovic I
    J Bacteriol; 2006 Feb; 188(4):1260-5. PubMed ID: 16452407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the beta-glucosidase gene from Bifidobacterium animalis subsp. lactis and its expression in B. bifidum BGN4.
    Youn SY; Park MS; Ji GE
    J Microbiol Biotechnol; 2012 Dec; 22(12):1714-23. PubMed ID: 23221535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterisation of ABC-type multidrug efflux systems in Bifidobacterium longum.
    Moodley C; Reid SJ; Abratt VR
    Anaerobe; 2015 Apr; 32():63-69. PubMed ID: 25529295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of sucrose-6-phosphate hydrolase activity in Streptococcus mutans: characterization of the scrR gene.
    Hiratsuka K; Wang B; Sato Y; Kuramitsu H
    Infect Immun; 1998 Aug; 66(8):3736-43. PubMed ID: 9673256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide sequence, expression and transcriptional analysis of the Bifidobacterium longum MB 219 lacZ gene.
    Rossi M; Altomare L; Gonzàlez Vara y Rodriguez A; Brigidi P; Matteuzzi D
    Arch Microbiol; 2000; 174(1-2):74-80. PubMed ID: 10985745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny.
    Ventura M; Canchaya C; van Sinderen D; Fitzgerald GF; Zink R
    Appl Environ Microbiol; 2004 May; 70(5):3110-21. PubMed ID: 15128574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.