These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12513988)

  • 1. Thermostabilization of bacterial fructosyl-amino acid oxidase by directed evolution.
    Sakaue R; Kajiyama N
    Appl Environ Microbiol; 2003 Jan; 69(1):139-45. PubMed ID: 12513988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of thermostability of fungal deglycating enzymes by directed evolution.
    Hirokawa K; Ichiyanagi A; Kajiyama N
    Appl Microbiol Biotechnol; 2008 Apr; 78(5):775-81. PubMed ID: 18246344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostabilization of porcine kidney D-amino acid oxidase by a single amino acid substitution.
    Bakke M; Setoyama C; Miura R; Kajiyama N
    Biotechnol Bioeng; 2006 Apr; 93(5):1023-7. PubMed ID: 16245349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant agrobacterium AgaE-like protein with fructosyl amino acid oxidase activity.
    Hirokawa K; Kajiyama N
    Biosci Biotechnol Biochem; 2002 Nov; 66(11):2323-9. PubMed ID: 12506967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of a thermostable NADP⁺-dependent D-amino acid dehydrogenase from Ureibacillus thermosphaericus strain A1 meso-diaminopimelate dehydrogenase by site-directed mutagenesis.
    Akita H; Doi K; Kawarabayasi Y; Ohshima T
    Biotechnol Lett; 2012 Sep; 34(9):1693-9. PubMed ID: 22618239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and expression of fructosyl-amino acid oxidase gene from Corynebacterium sp. 2-4-1 in Escherichia coli.
    Sakaue R; Hiruma M; Kajiyama N; Koyama Y
    Biosci Biotechnol Biochem; 2002 Jun; 66(6):1256-61. PubMed ID: 12162546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A continuous enzyme assay and characterisation of fructosyl amine oxidase enzymes (EC 1.5.3).
    Miller AG; Hegge S; Uhlmann A; Gerrard JA
    Arch Biochem Biophys; 2005 Feb; 434(1):60-6. PubMed ID: 15629109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of fructosyl amine oxidase specific to fructosyl valine by site-directed mutagenesis.
    Miura S; Ferri S; Tsugawa W; Kim S; Sode K
    Protein Eng Des Sel; 2008 Apr; 21(4):233-9. PubMed ID: 18239075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of substrate specificity of fructosyl-amino acid oxidase from Ulocladium sp. JS-103.
    Fujiwara M; Sumitani J; Koga S; Yoshioka I; Kouzuma T; Imamura S; Kawaguchi T; Arai M
    J Biosci Bioeng; 2006 Sep; 102(3):241-3. PubMed ID: 17046541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and stabilization of galactose oxidase in Escherichia coli by directed evolution.
    Sun L; Petrounia IP; Yagasaki M; Bandara G; Arnold FH
    Protein Eng; 2001 Sep; 14(9):699-704. PubMed ID: 11707617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motif-based search for a novel fructosyl peptide oxidase from genome databases.
    Kim S; Ferri S; Tsugawa W; Mori K; Sode K
    Biotechnol Bioeng; 2010 Jun; 106(3):358-66. PubMed ID: 20198658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop engineering of amadoriase II and mutational cooperativity.
    Qian Y; Zheng J; Lin Z
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8599-607. PubMed ID: 23354448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving glyphosate oxidation activity of glycine oxidase from Bacillus cereus by directed evolution.
    Zhan T; Zhang K; Chen Y; Lin Y; Wu G; Zhang L; Yao P; Shao Z; Liu Z
    PLoS One; 2013; 8(11):e79175. PubMed ID: 24223901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of substrate specificity of fructosyl-amino acid oxidase from Fusarium oxysporum.
    Fujiwara M; Sumitani J; Koga S; Yoshioka I; Kouzuma T; Imamura S; Kawaguchi T; Arai M
    Appl Microbiol Biotechnol; 2007 Mar; 74(4):813-9. PubMed ID: 17160532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a fructosyl-amine oxidase from an Arthrobacter sp.
    Ferri S; Sakaguchi A; Goto H; Tsugawa W; Sode K
    Biotechnol Lett; 2005 Jan; 27(1):27-32. PubMed ID: 15685416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of fructosyl-amino acid oxidases of Aspergillus oryzae.
    Akazawa S; Karino T; Yoshida N; Katsuragi T; Tani Y
    Appl Environ Microbiol; 2004 Oct; 70(10):5882-90. PubMed ID: 15466528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed evolution to improve the thermostability of prolyl endopeptidase.
    Uchiyama H; Inaoka T; Ohkuma-Soyejima T; Togame H; Shibanaka Y; Yoshimoto T; Kokubo T
    J Biochem; 2000 Sep; 128(3):441-7. PubMed ID: 10965043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations provide insights into the substrate specificity of FAOX family members.
    Rigoldi F; Spero L; Dalle Vedove A; Redaelli A; Parisini E; Gautieri A
    Mol Biosyst; 2016 Jul; 12(8):2622-33. PubMed ID: 27327839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration.
    Johannes TW; Woodyer RD; Zhao H
    Appl Environ Microbiol; 2005 Oct; 71(10):5728-34. PubMed ID: 16204481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the active site of L-aspartate oxidase by site-directed mutagenesis: role of basic residues in fumarate reduction.
    Tedeschi G; Ronchi S; Simonic T; Treu C; Mattevi A; Negri A
    Biochemistry; 2001 Apr; 40(15):4738-44. PubMed ID: 11294641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.