BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12514069)

  • 1. Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker's yeast Saccharomyces cerevisiae.
    Shima J; Sakata-Tsuda Y; Suzuki Y; Nakajima R; Watanabe H; Kawamoto S; Takano H
    Appl Environ Microbiol; 2003 Jan; 69(1):715-8. PubMed ID: 12514069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.
    Tsolmonbaatar A; Hashida K; Sugimoto Y; Watanabe D; Furukawa S; Takagi H
    Int J Food Microbiol; 2016 Dec; 238():233-240. PubMed ID: 27672730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast.
    Lin X; Zhang CY; Bai XW; Feng B; Xiao DG
    Int J Food Microbiol; 2015 Mar; 197():15-21. PubMed ID: 25555226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast.
    Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H
    Microb Cell Fact; 2012 Apr; 11():40. PubMed ID: 22462683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast.
    Panadero J; Hernández-López MJ; Prieto JA; Randez-Gil F
    Appl Environ Microbiol; 2007 Aug; 73(15):4824-31. PubMed ID: 17557846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough.
    Sasano Y; Haitani Y; Ohtsu I; Shima J; Takagi H
    Int J Food Microbiol; 2012 Jan; 152(1-2):40-3. PubMed ID: 22041027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing.
    Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.
    Sasano Y; Takahashi S; Shima J; Takagi H
    Int J Food Microbiol; 2010 Mar; 138(1-2):181-5. PubMed ID: 20096471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of intra-strain self-cloning procedure for breeding baker's yeast strains.
    Nakagawa Y; Ogihara H; Mochizuki C; Yamamura H; Iimura Y; Hayakawa M
    J Biosci Bioeng; 2017 Mar; 123(3):319-326. PubMed ID: 27829542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough.
    Zhang CY; Lin X; Feng B; Liu XE; Bai XW; Xu J; Pi L; Xiao DG
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6375-6383. PubMed ID: 27041690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions.
    Tanghe A; Van Dijck P; Colavizza D; Thevelein JM
    Appl Environ Microbiol; 2004 Jun; 70(6):3377-82. PubMed ID: 15184134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides.
    Izawa S; Ikeda K; Takahashi N; Inoue Y
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):533-7. PubMed ID: 17505771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs.
    Kaino T; Tateiwa T; Mizukami-Murata S; Shima J; Takagi H
    Appl Environ Microbiol; 2008 Sep; 74(18):5845-9. PubMed ID: 18641164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial Baker's yeast.
    Shima J; Hino A; Yamada-Iyo C; Suzuki Y; Nakajima R; Watanabe H; Mori K; Takano H
    Appl Environ Microbiol; 1999 Jul; 65(7):2841-6. PubMed ID: 10388673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.
    Dong J; Chen D; Wang G; Zhang C; Du L; Liu S; Zhao Y; Xiao D
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):817-28. PubMed ID: 26965428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough.
    Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H
    J Biosci Bioeng; 2012 May; 113(5):592-5. PubMed ID: 22280966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs.
    Nakagawa S; Ouchi K
    Appl Environ Microbiol; 1994 Oct; 60(10):3499-502. PubMed ID: 7986027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.
    Sasano Y; Haitani Y; Hashida K; Oshiro S; Shima J; Takagi H
    Int J Food Microbiol; 2013 Aug; 165(3):241-5. PubMed ID: 23800735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough.
    Tan H; Dong J; Wang G; Xu H; Zhang C; Xiao D
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1275-85. PubMed ID: 24951963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced leavening ability of baker's yeast by overexpression of SNR84 with PGM2 deletion.
    Lin X; Zhang CY; Bai XW; Xiao DG
    J Ind Microbiol Biotechnol; 2015 Jun; 42(6):939-48. PubMed ID: 25877163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.