These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 12514069)
1. Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker's yeast Saccharomyces cerevisiae. Shima J; Sakata-Tsuda Y; Suzuki Y; Nakajima R; Watanabe H; Kawamoto S; Takano H Appl Environ Microbiol; 2003 Jan; 69(1):715-8. PubMed ID: 12514069 [TBL] [Abstract][Full Text] [Related]
2. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. Tsolmonbaatar A; Hashida K; Sugimoto Y; Watanabe D; Furukawa S; Takagi H Int J Food Microbiol; 2016 Dec; 238():233-240. PubMed ID: 27672730 [TBL] [Abstract][Full Text] [Related]
3. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast. Lin X; Zhang CY; Bai XW; Feng B; Xiao DG Int J Food Microbiol; 2015 Mar; 197():15-21. PubMed ID: 25555226 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast. Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H Microb Cell Fact; 2012 Apr; 11():40. PubMed ID: 22462683 [TBL] [Abstract][Full Text] [Related]
5. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Sasano Y; Haitani Y; Ohtsu I; Shima J; Takagi H Int J Food Microbiol; 2012 Jan; 152(1-2):40-3. PubMed ID: 22041027 [TBL] [Abstract][Full Text] [Related]
6. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast. Panadero J; Hernández-López MJ; Prieto JA; Randez-Gil F Appl Environ Microbiol; 2007 Aug; 73(15):4824-31. PubMed ID: 17557846 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. Sasano Y; Takahashi S; Shima J; Takagi H Int J Food Microbiol; 2010 Mar; 138(1-2):181-5. PubMed ID: 20096471 [TBL] [Abstract][Full Text] [Related]
9. Development of intra-strain self-cloning procedure for breeding baker's yeast strains. Nakagawa Y; Ogihara H; Mochizuki C; Yamamura H; Iimura Y; Hayakawa M J Biosci Bioeng; 2017 Mar; 123(3):319-326. PubMed ID: 27829542 [TBL] [Abstract][Full Text] [Related]
10. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough. Zhang CY; Lin X; Feng B; Liu XE; Bai XW; Xu J; Pi L; Xiao DG Appl Microbiol Biotechnol; 2016 Jul; 100(14):6375-6383. PubMed ID: 27041690 [TBL] [Abstract][Full Text] [Related]
11. Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions. Tanghe A; Van Dijck P; Colavizza D; Thevelein JM Appl Environ Microbiol; 2004 Jun; 70(6):3377-82. PubMed ID: 15184134 [TBL] [Abstract][Full Text] [Related]
12. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Izawa S; Ikeda K; Takahashi N; Inoue Y Appl Microbiol Biotechnol; 2007 Jun; 75(3):533-7. PubMed ID: 17505771 [TBL] [Abstract][Full Text] [Related]
13. Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs. Kaino T; Tateiwa T; Mizukami-Murata S; Shima J; Takagi H Appl Environ Microbiol; 2008 Sep; 74(18):5845-9. PubMed ID: 18641164 [TBL] [Abstract][Full Text] [Related]
14. Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial Baker's yeast. Shima J; Hino A; Yamada-Iyo C; Suzuki Y; Nakajima R; Watanabe H; Mori K; Takano H Appl Environ Microbiol; 1999 Jul; 65(7):2841-6. PubMed ID: 10388673 [TBL] [Abstract][Full Text] [Related]
15. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1. Dong J; Chen D; Wang G; Zhang C; Du L; Liu S; Zhao Y; Xiao D J Ind Microbiol Biotechnol; 2016 Jun; 43(6):817-28. PubMed ID: 26965428 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H J Biosci Bioeng; 2012 May; 113(5):592-5. PubMed ID: 22280966 [TBL] [Abstract][Full Text] [Related]
17. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs. Nakagawa S; Ouchi K Appl Environ Microbiol; 1994 Oct; 60(10):3499-502. PubMed ID: 7986027 [TBL] [Abstract][Full Text] [Related]
18. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast. Sasano Y; Haitani Y; Hashida K; Oshiro S; Shima J; Takagi H Int J Food Microbiol; 2013 Aug; 165(3):241-5. PubMed ID: 23800735 [TBL] [Abstract][Full Text] [Related]
19. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough. Tan H; Dong J; Wang G; Xu H; Zhang C; Xiao D J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1275-85. PubMed ID: 24951963 [TBL] [Abstract][Full Text] [Related]
20. Enhanced leavening ability of baker's yeast by overexpression of SNR84 with PGM2 deletion. Lin X; Zhang CY; Bai XW; Xiao DG J Ind Microbiol Biotechnol; 2015 Jun; 42(6):939-48. PubMed ID: 25877163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]