These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 12514228)

  • 1. Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study.
    Elliott R; Newman JL; Longe OA; Deakin JF
    J Neurosci; 2003 Jan; 23(1):303-7. PubMed ID: 12514228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential magnitude coding of gains and omitted rewards in the ventral striatum.
    Pedroni A; Koeneke S; Velickaite A; Jäncke L
    Brain Res; 2011 Sep; 1411():76-86. PubMed ID: 21831362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The architecture of reward value coding in the human orbitofrontal cortex.
    Sescousse G; Redouté J; Dreher JC
    J Neurosci; 2010 Sep; 30(39):13095-104. PubMed ID: 20881127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI.
    Knutson B; Fong GW; Bennett SM; Adams CM; Hommer D
    Neuroimage; 2003 Feb; 18(2):263-72. PubMed ID: 12595181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation of reward anticipation and outcome with event-related fMRI.
    Knutson B; Fong GW; Adams CM; Varner JL; Hommer D
    Neuroreport; 2001 Dec; 12(17):3683-7. PubMed ID: 11726774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential neural substrates for responding to monetary, sexual humor, and erotic rewards.
    Chan YC; Hsu WC; Chou TL
    Biol Psychol; 2022 Jul; 172():108385. PubMed ID: 35777520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation between the processing of humorous and monetary rewards in the 'motivation' and 'hedonic' brains.
    Chan YC; Hsu WC; Chou TL
    Sci Rep; 2018 Oct; 8(1):15425. PubMed ID: 30337614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural processing of food and monetary rewards is modulated by metabolic state.
    Yousuf M; Heldmann M; Göttlich M; Münte TF; Doñamayor N
    Brain Imaging Behav; 2018 Oct; 12(5):1379-1392. PubMed ID: 29243121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instrumental responding for rewards is associated with enhanced neuronal response in subcortical reward systems.
    Elliott R; Newman JL; Longe OA; William Deakin JF
    Neuroimage; 2004 Mar; 21(3):984-90. PubMed ID: 15006665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal correlates of reward and loss in Cluster B personality disorders: a functional magnetic resonance imaging study.
    Völlm B; Richardson P; McKie S; Elliott R; Dolan M; Deakin B
    Psychiatry Res; 2007 Nov; 156(2):151-67. PubMed ID: 17920821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-resolution fMRI approach to characterize functionally distinct neural pathways within dopaminergic midbrain and nucleus accumbens during reward and salience processing.
    Richter A; Reinhard F; Kraemer B; Gruber O
    Eur Neuropsychopharmacol; 2020 Jul; 36():137-150. PubMed ID: 32546416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identity prediction errors in the human midbrain update reward-identity expectations in the orbitofrontal cortex.
    Howard JD; Kahnt T
    Nat Commun; 2018 Apr; 9(1):1611. PubMed ID: 29686225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ventral-striatal/nucleus-accumbens sensitivity to prediction errors during classification learning.
    Rodriguez PF; Aron AR; Poldrack RA
    Hum Brain Mapp; 2006 Apr; 27(4):306-13. PubMed ID: 16092133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies.
    Sescousse G; Caldú X; Segura B; Dreher JC
    Neurosci Biobehav Rev; 2013 May; 37(4):681-96. PubMed ID: 23415703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple representations of belief states and action values in corticobasal ganglia loops.
    Samejima K; Doya K
    Ann N Y Acad Sci; 2007 May; 1104():213-28. PubMed ID: 17435124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hedonic and informational functions of the human orbitofrontal cortex.
    Elliott R; Agnew Z; Deakin JF
    Cereb Cortex; 2010 Jan; 20(1):198-204. PubMed ID: 19435707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametric modulation of reward sequences during a reversal task in ACC and VMPFC but not amygdala and striatum.
    Becker MP; Nitsch AM; Hewig J; Miltner WH; Straube T
    Neuroimage; 2016 Dec; 143():50-57. PubMed ID: 27622399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance.
    Cools R; Clark L; Robbins TW
    J Neurosci; 2004 Feb; 24(5):1129-35. PubMed ID: 14762131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional interaction of medial mediodorsal thalamic nucleus but not nucleus accumbens with amygdala and orbital prefrontal cortex is essential for adaptive response selection after reinforcer devaluation.
    Izquierdo A; Murray EA
    J Neurosci; 2010 Jan; 30(2):661-9. PubMed ID: 20071531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.