BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 12514230)

  • 1. Olfactory signal transduction in the mouse septal organ.
    Ma M; Grosmaitre X; Iwema CL; Baker H; Greer CA; Shepherd GM
    J Neurosci; 2003 Jan; 23(1):317-24. PubMed ID: 12514230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trpc2-expressing sensory neurons in the mouse main olfactory epithelium of type B express the soluble guanylate cyclase Gucy1b2.
    Omura M; Mombaerts P
    Mol Cell Neurosci; 2015 Mar; 65():114-24. PubMed ID: 25701815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory transduction in vomeronasal neurons: evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade.
    Berghard A; Buck LB
    J Neurosci; 1996 Feb; 16(3):909-18. PubMed ID: 8558259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of intracellular cyclic GMP levels in olfactory sensory neurons.
    Moon C; Simpson PJ; Tu Y; Cho H; Ronnett GV
    J Neurochem; 2005 Oct; 95(1):200-9. PubMed ID: 16181424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway.
    Juilfs DM; Fülle HJ; Zhao AZ; Houslay MD; Garbers DL; Beavo JA
    Proc Natl Acad Sci U S A; 1997 Apr; 94(7):3388-95. PubMed ID: 9096404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase III.
    Sinnarajah S; Dessauer CW; Srikumar D; Chen J; Yuen J; Yilma S; Dennis JC; Morrison EE; Vodyanoy V; Kehrl JH
    Nature; 2001 Feb; 409(6823):1051-5. PubMed ID: 11234015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-Sensing Ion Channels Contribute to Type III Adenylyl Cyclase-Independent Acid Sensing of Mouse Olfactory Sensory Neurons.
    Yang J; Qiu L; Strobel M; Kabel A; Zha XM; Chen X
    Mol Neurobiol; 2020 Jul; 57(7):3042-3056. PubMed ID: 32458389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and molecular constituents of olfactory sensation in vertebrates.
    Nakamura T
    Comp Biochem Physiol A Mol Integr Physiol; 2000 May; 126(1):17-32. PubMed ID: 10908849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guanylyl cyclases as a family of putative odorant receptors.
    Gibson AD; Garbers DL
    Annu Rev Neurosci; 2000; 23():417-39. PubMed ID: 10845070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Expression Profiles of Main Olfactory Epithelium in Adenylyl Cyclase 3 Knockout Mice.
    Wang Z; Zhou Y; Luo Y; Zhang J; Zhai Y; Yang D; Zhang Z; Li Y; Storm DR; Ma RZ
    Int J Mol Sci; 2015 Nov; 16(12):28320-33. PubMed ID: 26633363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Odorant Receptor-Dependent Role of Olfactory Marker Protein in Olfactory Receptor Neurons.
    Dibattista M; Reisert J
    J Neurosci; 2016 Mar; 36(10):2995-3006. PubMed ID: 26961953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway.
    Liu CY; Fraser SE; Koos DS
    J Comp Neurol; 2009 Sep; 516(1):36-48. PubMed ID: 19565523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse.
    Hu J; Zhong C; Ding C; Chi Q; Walz A; Mombaerts P; Matsunami H; Luo M
    Science; 2007 Aug; 317(5840):953-7. PubMed ID: 17702944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olfactory receptors and signalling elements in the Grueneberg ganglion.
    Fleischer J; Schwarzenbacher K; Besser S; Hass N; Breer H
    J Neurochem; 2006 Jul; 98(2):543-54. PubMed ID: 16805845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium.
    Leinders-Zufall T; Cockerham RE; Michalakis S; Biel M; Garbers DL; Reed RR; Zufall F; Munger SD
    Proc Natl Acad Sci U S A; 2007 Sep; 104(36):14507-12. PubMed ID: 17724338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of odorant adaptation in the olfactory receptor cell.
    Kurahashi T; Menini A
    Nature; 1997 Feb; 385(6618):725-9. PubMed ID: 9034189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptor guanylyl cyclases in mammalian olfactory function.
    Zufall F; Munger SD
    Mol Cell Biochem; 2010 Jan; 334(1-2):191-7. PubMed ID: 19941039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular organization of the olfactory septal organ.
    Tian H; Ma M
    J Neurosci; 2004 Sep; 24(38):8383-90. PubMed ID: 15385621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Olfactory Cilia Pattern in the Mammalian Nose Ensures High Sensitivity to Odors.
    Challis RC; Tian H; Wang J; He J; Jiang J; Chen X; Yin W; Connelly T; Ma L; Yu CR; Pluznick JL; Storm DR; Huang L; Zhao K; Ma M
    Curr Biol; 2015 Oct; 25(19):2503-12. PubMed ID: 26365258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditional ablation of mature olfactory sensory neurons mediated by diphtheria toxin receptor.
    Chen H; Kohno K; Gong Q
    J Neurocytol; 2005 Mar; 34(1-2):37-47. PubMed ID: 16374708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.