These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12514247)

  • 41. Studies on the biosynthesis of tetrahymanol in Tetrahymena pyriformis. The mechanism of inhibition by cholesterol.
    Beedle AS; Munday KA; Wilton DC
    Biochem J; 1974 Jul; 142(1):57-64. PubMed ID: 4140721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: comparison with inhibitors of HMG-CoA reductase.
    Amin D; Rutledge RZ; Needle SN; Galczenski HF; Neuenschwander K; Scotese AC; Maguire MP; Bush RC; Hele DJ; Bilder GE; Perrone MH
    J Pharmacol Exp Ther; 1997 May; 281(2):746-52. PubMed ID: 9152381
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accumulation of prenyl alcohols by terpenoid biosynthesis inhibitors in various microorganisms.
    Muramatsu M; Ohto C; Obata S; Sakuradani E; Shimizu S
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):589-95. PubMed ID: 18636253
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.
    Pérez-Moreno G; Sealey-Cardona M; Rodrigues-Poveda C; Gelb MH; Ruiz-Pérez LM; Castillo-Acosta V; Urbina JA; González-Pacanowska D
    Int J Parasitol; 2012 Oct; 42(11):975-89. PubMed ID: 22964455
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering of Saccharomyces cerevisiae for the production of (+)-ambrein.
    Moser S; Leitner E; Plocek TJ; Vanhessche K; Pichler H
    Yeast; 2020 Jan; 37(1):163-172. PubMed ID: 31606910
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ertosterol biosynthesis in Saccharomyces cerevisiae: mutants deficient in the early steps of the pathway.
    Karst F; Lacroute F
    Mol Gen Genet; 1977 Sep; 154(3):269-77. PubMed ID: 200835
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of a squalene epoxidase inhibitor, terbinafine, on ether lipid biosyntheses in a thermoacidophilic archaeon, Thermoplasma acidophilum.
    Kon T; Nemoto N; Oshima T; Yamagishi A
    J Bacteriol; 2002 Mar; 184(5):1395-401. PubMed ID: 11844769
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genotoxicity and cytotoxicity of oxindole alkaloids from Uncaria tomentosa (cat's claw): Chemotype relevance.
    Kaiser S; Carvalho ÂR; Pittol V; Dietrich F; Manica F; Machado MM; de Oliveira LF; Oliveira Battastini AM; Ortega GG
    J Ethnopharmacol; 2016 Aug; 189():90-8. PubMed ID: 27180878
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The biosynthesis of triterpenoids and steroids.
    Harrison DM
    Nat Prod Rep; 1985 Dec; 2(6):525-60. PubMed ID: 3913885
    [No Abstract]   [Full Text] [Related]  

  • 50. Inhibitors of sterol biosynthesis and their applications.
    Mercer EI
    Prog Lipid Res; 1993; 32(4):357-416. PubMed ID: 8309949
    [No Abstract]   [Full Text] [Related]  

  • 51. Engineering triterpene metabolism in tobacco.
    Wu S; Jiang Z; Kempinski C; Eric Nybo S; Husodo S; Williams R; Chappell J
    Planta; 2012 Sep; 236(3):867-77. PubMed ID: 22729821
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detailed mechanism of squalene epoxidase inhibition by terbinafine.
    Nowosielski M; Hoffmann M; Wyrwicz LS; Stepniak P; Plewczynski DM; Lazniewski M; Ginalski K; Rychlewski L
    J Chem Inf Model; 2011 Feb; 51(2):455-62. PubMed ID: 21229992
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Co-expression of squalene epoxidases with triterpene cyclases boosts production of triterpenoids in plants and yeast.
    Dong L; Pollier J; Bassard JE; Ntallas G; Almeida A; Lazaridi E; Khakimov B; Arendt P; de Oliveira LS; Lota F; Goossens A; Michoux F; Bak S
    Metab Eng; 2018 Sep; 49():1-12. PubMed ID: 30016654
    [TBL] [Abstract][Full Text] [Related]  

  • 54. HPLC-PDA method for quinovic acid glycosides assay in Cat's claw (Uncaria tomentosa) associated with UPLC/Q-TOF-MS analysis.
    Pavei C; Kaiser S; Verza SG; Borre GL; Ortega GG
    J Pharm Biomed Anal; 2012 Mar; 62():250-7. PubMed ID: 22296654
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of biological activity of Uncaria tomentosa (Willd.) DC. using the chicken embryo model.
    Pilarski R; Bednarczyk M; Gulewicz K
    Folia Biol (Krakow); 2009; 57(3-4):207-12. PubMed ID: 19777966
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Massive production of farnesol-derived dicarboxylic acids in mice treated with the squalene synthase inhibitor zaragozic acid A.
    Vaidya S; Bostedor R; Kurtz MM; Bergstrom JD; Bansal VS
    Arch Biochem Biophys; 1998 Jul; 355(1):84-92. PubMed ID: 9647670
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Building terpene production platforms in yeast.
    Zhuang X; Chappell J
    Biotechnol Bioeng; 2015 Sep; 112(9):1854-64. PubMed ID: 25788404
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro synergism of a water insoluble fraction of Uncaria tomentosa combined with fluconazole and terbinafine against resistant non-Candida albicans isolates.
    Moraes RC; Carvalho AR; Lana AJ; Kaiser S; Pippi B; Fuentefria AM; Ortega GG
    Pharm Biol; 2017 Dec; 55(1):406-415. PubMed ID: 27931150
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae.
    Garaiová M; Zambojová V; Simová Z; Griač P; Hapala I
    FEMS Yeast Res; 2014 Mar; 14(2):310-23. PubMed ID: 24119181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Uncaria tomentosa acts as a potent TNF-alpha inhibitor through NF-kappaB.
    Allen-Hall L; Arnason JT; Cano P; Lafrenie RM
    J Ethnopharmacol; 2010 Feb; 127(3):685-93. PubMed ID: 19995599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.