BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1251440)

  • 1. Effect of lung parenchyma on bronchial collapsibility during maximum expiratory flow in dogs.
    Sasaki H; Nakumura M; Takishma T
    Tohoku J Exp Med; 1976 Jan; 118(1):1-10. PubMed ID: 1251440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CT and radiographic evaluation of bronchial collapsibility at forced expiration in asymptomatic brachycephalic dogs.
    Yoon H; Yu J; An G; Bang S; Kwon D; Kim H; Lee H; Chang J; Chang D
    Vet Radiol Ultrasound; 2020 Mar; 61(2):167-180. PubMed ID: 31896169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Series distribution of airway collapsibility in dogs.
    Nakamura M; Sasaki H; Sekizawa K; Ishii M; Takishima T; Hoppin FG
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Feb; 50(2):325-33. PubMed ID: 7204206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of lung parenchyma on collapsibility of dog bronchi.
    Takishima T; Sasaki H; Sasaki T
    J Appl Physiol; 1975 May; 38(5):875-81. PubMed ID: 1126898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of lung parenchyma on dynamic bronchial collapsibility of excised dog lungs.
    Sasaki H; Takishima T; Sasaki T
    J Appl Physiol Respir Environ Exerc Physiol; 1977 May; 42(5):699-705. PubMed ID: 863835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmental bronchi collapsibility: computed tomography-based quantification in patients with chronic obstructive pulmonary disease and correlation with emphysema phenotype, corresponding lung volume changes and clinical parameters.
    Kloth C; Thaiss WM; Ditt H; Hetzel J; Schülen E; Nikolaou K; Horger M
    J Thorac Dis; 2016 Dec; 8(12):3521-3529. PubMed ID: 28149545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of lung surface tension on bronchial collapsibility in excised dog lungs.
    Nakamura M; Sasaki H; Takishima T
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Oct; 47(4):692-700. PubMed ID: 511675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and morphological determinants of maximal expiratory flow in chronic obstructive lung disease.
    Tiddens HA; Bogaard JM; de Jongste JC; Hop WC; Coxson HO; Paré PD
    Eur Respir J; 1996 Sep; 9(9):1785-94. PubMed ID: 8880092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computed tomographic bronchial collapsibility values over 50% may be detected in healthy dogs.
    Oh D; Lee S; Kim S; Choen S; Choi M; Yoon J
    Vet Radiol Ultrasound; 2019 Jan; 60(1):28-37. PubMed ID: 30311323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isovolume pressure-flow relationships in intrapulmonary bronchi of excised dog lungs.
    Suzuki S; Sasaki H; Sekizawa K; Takishima T
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Feb; 52(2):295-303. PubMed ID: 7061285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Theoretical analysis of flow limitation on the maximum expiratory flow volume curve].
    Tamaya S
    Kokyu To Junkan; 1985 Aug; 33(8):971-7. PubMed ID: 3906805
    [No Abstract]   [Full Text] [Related]  

  • 12. Peribronchial stress analysis utilizing concentric cylindrical shells of parenchyma.
    Tani J; Nakamura M; Sasaki H; Okubo T; Takishima T; Hildebrandt J
    J Biomech Eng; 1982 May; 104(2):159-62. PubMed ID: 7078132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pulmonary vascular pressure on bronchial collapsibility of excised dog lungs.
    Sasaki H; Takishima T; Sasaki T
    Jpn J Physiol; 1977; 27(2):157-66. PubMed ID: 916374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Configuration of maximum expiratory flow-volume curve: model experiments with physiological implications.
    Pedersen OF; Ingram RH
    J Appl Physiol (1985); 1985 Apr; 58(4):1305-13. PubMed ID: 3988684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exhaled flow monitoring can detect bronchial flap-valve obstruction in a mechanical lung model.
    Breen PH; Serina ER; Barker SJ
    Anesth Analg; 1995 Aug; 81(2):292-6. PubMed ID: 7618717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of volume history and time dependence of flow-volume curves on assessment of bronchial response to inhaled methacholine in normals.
    Brusasco V; Rocchi D
    Respiration; 1981; 41(2):106-12. PubMed ID: 7020022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of maximum expiratory flow rate from area-transmural pressure curve of compressed airway.
    Jones JG; Fraser RB; Nadel JA
    J Appl Physiol; 1975 Jun; 38(6):1002-11. PubMed ID: 1141112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of reduced maximum expiratory flow in methacholine-induced bronchoconstriction in dogs.
    Mink SN
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Sep; 55(3):897-912. PubMed ID: 6355026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of vagal tone on airway smooth muscle force and peribronchial pressure in dogs.
    Kikuchi R; Sasaki H; Nakamura M; Takishima T
    Tohoku J Exp Med; 1982 Feb; 136(2):157-62. PubMed ID: 7071836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologic differentiation of upper and lower airway obstruction.
    Davidson FF; Burke GW
    Ann Otol Rhinol Laryngol; 1977; 86(5 Pt 1):630-2. PubMed ID: 911142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.