BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12515556)

  • 1. Differential ligand recognition by the Src and phosphatidylinositol 3-kinase Src homology 3 domains: circular dichroism and ultraviolet resonance Raman studies.
    Okishio N; Tanaka T; Fukuda R; Nagai M
    Biochemistry; 2003 Jan; 42(1):208-16. PubMed ID: 12515556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of phosphatidylinositol 3-kinase Src homology 3 domain with its ligand peptide studied by absorption, circular dichroism, and UV resonance raman spectroscopies.
    Okishio N; Nagai M; Fukuda R; Nagatomo S; Kitagawa T
    Biopolymers; 2000; 57(4):208-17. PubMed ID: 10861385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the conserved acidic residue Asp21 in the structure of phosphatidylinositol 3-kinase Src homology 3 domain: circular dichroism and nuclear magnetic resonance studies.
    Okishio N; Tanaka T; Fukuda R; Nagai M
    Biochemistry; 2001 Jan; 40(1):119-29. PubMed ID: 11141062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications.
    Polverini E; Rangaraj G; Libich DS; Boggs JM; Harauz G
    Biochemistry; 2008 Jan; 47(1):267-82. PubMed ID: 18067320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of tyrosine residues involved in ligand recognition by the phosphatidylinositol 3-kinase Src homology 3 domain: circular dichroism and UV resonance Raman studies.
    Okishio N; Tanaka T; Nagai M; Fukuda R; Nagatomo S; Kitagawa T
    Biochemistry; 2001 Dec; 40(51):15797-804. PubMed ID: 11747457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural studies of the phosphatidylinositol 3-kinase (PI3K) SH3 domain in complex with a peptide ligand: role of the anchor residue in ligand binding.
    Batra-Safferling R; Granzin J; Mödder S; Hoffmann S; Willbold D
    Biol Chem; 2010 Jan; 391(1):33-42. PubMed ID: 19919182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of backbone motions in ligand binding to the c-Src SH3 domain.
    Wang C; Pawley NH; Nicholson LK
    J Mol Biol; 2001 Nov; 313(4):873-87. PubMed ID: 11697910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-induced strain in hydrogen bonds of the c-Src SH3 domain detected by NMR.
    Cordier F; Wang C; Grzesiek S; Nicholson LK
    J Mol Biol; 2000 Dec; 304(4):497-505. PubMed ID: 11099375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stable alpha-helix-rich intermediate is formed by a single mutation of the beta-sheet protein, src SH3, at pH 3.
    Li J; Matsumura Y; Shinjo M; Kojima M; Kihara H
    J Mol Biol; 2007 Sep; 372(3):747-55. PubMed ID: 17681530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of protein-ligand interactions by photocleavage of a cyclic peptide using phosphatidylinositol 3-kinase SH3 domain as model system.
    Takahashi I; Kuroiwa S; Lindfors HE; Ndamba LA; Hiruma Y; Yajima T; Okishio N; Ubbink M; Hirota S
    J Pept Sci; 2009 Jun; 15(6):411-6. PubMed ID: 19378350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src.
    Gonfloni S; Weijland A; Kretzschmar J; Superti-Furga G
    Nat Struct Biol; 2000 Apr; 7(4):281-6. PubMed ID: 10742171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure analysis and solution studies of human Lck-SH3; zinc-induced homodimerization competes with the binding of proline-rich motifs.
    Romir J; Lilie H; Egerer-Sieber C; Bauer F; Sticht H; Muller YA
    J Mol Biol; 2007 Feb; 365(5):1417-28. PubMed ID: 17118402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and evaluation of conformationally constrained peptide analogues as the Src SH3 domain binding ligands.
    Tiwari R; Brown A; Narramaneni S; Sun G; Parang K
    Biochimie; 2010 Sep; 92(9):1153-63. PubMed ID: 20109515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of PxxDY motif recognition in SH3 binding.
    Aitio O; Hellman M; Kesti T; Kleino I; Samuilova O; Pääkkönen K; Tossavainen H; Saksela K; Permi P
    J Mol Biol; 2008 Sep; 382(1):167-78. PubMed ID: 18644376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leucine 255 of Src couples intramolecular interactions to inhibition of catalysis.
    Gonfloni S; Frischknecht F; Way M; Superti-Furga G
    Nat Struct Biol; 1999 Aug; 6(8):760-4. PubMed ID: 10426955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of specific high-affinity peptide ligands for the Abl-SH3 domain.
    Pisabarro MT; Serrano L
    Biochemistry; 1996 Aug; 35(33):10634-40. PubMed ID: 8718852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-UV circular dichroism and UV resonance Raman spectra of individual tryptophan residues in human hemoglobin and their changes upon the quaternary structure transition.
    Nagai M; Nagatomo S; Nagai Y; Ohkubo K; Imai K; Kitagawa T
    Biochemistry; 2012 Jul; 51(30):5932-41. PubMed ID: 22769585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenesis of a buried polar interaction in an SH3 domain: sequence conservation provides the best prediction of stability effects.
    Maxwell KL; Davidson AR
    Biochemistry; 1998 Nov; 37(46):16172-82. PubMed ID: 9819209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between the Fyn SH3-domain and adaptor protein Cbp/PAG derived ligands, effects on kinase activity and affinity.
    Solheim SA; Petsalaki E; Stokka AJ; Russell RB; Taskén K; Berge T
    FEBS J; 2008 Oct; 275(19):4863-74. PubMed ID: 18721137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SH3 domains and drug design: ligands, structure, and biological function.
    Dalgarno DC; Botfield MC; Rickles RJ
    Biopolymers; 1997; 43(5):383-400. PubMed ID: 9566119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.