These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 12516080)
1. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. Cooke MN; Fisher JP; Dean D; Rimnac C; Mikos AG J Biomed Mater Res B Appl Biomater; 2003 Feb; 64(2):65-9. PubMed ID: 12516080 [TBL] [Abstract][Full Text] [Related]
2. Optimization of photocrosslinkable resin components and 3D printing process parameters. Guerra AJ; Lammel-Lindemann J; Katko A; Kleinfehn A; Rodriguez CA; Catalani LH; Becker ML; Ciurana J; Dean D Acta Biomater; 2019 Oct; 97():154-161. PubMed ID: 31352105 [TBL] [Abstract][Full Text] [Related]
3. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Lee KW; Wang S; Fox BC; Ritman EL; Yaszemski MJ; Lu L Biomacromolecules; 2007 Apr; 8(4):1077-84. PubMed ID: 17326677 [TBL] [Abstract][Full Text] [Related]
4. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. Trachtenberg JE; Placone JK; Smith BT; Fisher JP; Mikos AG J Biomater Sci Polym Ed; 2017 Apr; 28(6):532-554. PubMed ID: 28125380 [TBL] [Abstract][Full Text] [Related]
5. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. Lan PX; Lee JW; Seol YJ; Cho DW J Mater Sci Mater Med; 2009 Jan; 20(1):271-9. PubMed ID: 18763023 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding. Lee KW; Wang S; Lu L; Jabbari E; Currier BL; Yaszemski MJ Tissue Eng; 2006 Oct; 12(10):2801-11. PubMed ID: 17518649 [TBL] [Abstract][Full Text] [Related]
7. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Cai Z; Wan Y; Becker ML; Long YZ; Dean D Biomaterials; 2019 Jul; 208():45-71. PubMed ID: 30991217 [TBL] [Abstract][Full Text] [Related]
8. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Fisher JP; Dean D; Mikos AG Biomaterials; 2002 Nov; 23(22):4333-43. PubMed ID: 12219823 [TBL] [Abstract][Full Text] [Related]
9. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. Fisher JP; Vehof JW; Dean D; van der Waerden JP; Holland TA; Mikos AG; Jansen JA J Biomed Mater Res; 2002 Mar; 59(3):547-56. PubMed ID: 11774313 [TBL] [Abstract][Full Text] [Related]
10. Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds. Beke S; Anjum F; Tsushima H; Ceseracciu L; Chieregatti E; Diaspro A; Athanassiou A; Brandi F J R Soc Interface; 2012 Nov; 9(76):3017-26. PubMed ID: 22696484 [TBL] [Abstract][Full Text] [Related]
11. 3D Printing of Poly(propylene fumarate) Oligomers: Evaluation of Resin Viscosity, Printing Characteristics and Mechanical Properties. Luo Y; Le Fer G; Dean D; Becker ML Biomacromolecules; 2019 Apr; 20(4):1699-1708. PubMed ID: 30807696 [TBL] [Abstract][Full Text] [Related]
12. Development of tissue-engineered substitutes of the ear ossicles: PORP-shaped poly(propylene fumarate)-based scaffolds cultured with human mesenchymal stromal cells. Danti S; D'Alessandro D; Pietrabissa A; Petrini M; Berrettini S J Biomed Mater Res A; 2010 Mar; 92(4):1343-56. PubMed ID: 19353559 [TBL] [Abstract][Full Text] [Related]
13. Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering. Ahn CB; Kim Y; Park SJ; Hwang Y; Lee JW J Biomater Sci Polym Ed; 2018; 29(7-9):917-931. PubMed ID: 28929935 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of thermal- and photo-crosslinked biodegradable poly(propylene fumarate)-based networks. Timmer MD; Ambrose CG; Mikos AG J Biomed Mater Res A; 2003 Sep; 66(4):811-8. PubMed ID: 12926033 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. Lee JW; Lan PX; Kim B; Lim G; Cho DW J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):1-9. PubMed ID: 18335437 [TBL] [Abstract][Full Text] [Related]
16. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds. Mott EJ; Busso M; Luo X; Dolder C; Wang MO; Fisher JP; Dean D Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():301-11. PubMed ID: 26838854 [TBL] [Abstract][Full Text] [Related]
17. In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering. Mistry AS; Pham QP; Schouten C; Yeh T; Christenson EM; Mikos AG; Jansen JA J Biomed Mater Res A; 2010 Feb; 92(2):451-62. PubMed ID: 19191316 [TBL] [Abstract][Full Text] [Related]
18. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Lee JW; Kang KS; Lee SH; Kim JY; Lee BK; Cho DW Biomaterials; 2011 Jan; 32(3):744-52. PubMed ID: 20933279 [TBL] [Abstract][Full Text] [Related]
19. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants. Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506 [TBL] [Abstract][Full Text] [Related]
20. Four-order stiffness variation of laser-fabricated photopolymer biodegradable scaffolds by laser parameter modulation. Farkas B; Romano I; Ceseracciu L; Diaspro A; Brandi F; Beke S Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():14-21. PubMed ID: 26117734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]