These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12516208)

  • 1. Computer simulations and neutron reflectivity of proteins at interfaces.
    Mungikar AA; Forciniti D
    Chemphyschem; 2002 Dec; 3(12):993-9. PubMed ID: 12516208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface enrichment of proteins at quartz/water interfaces: a neutron reflectivity study.
    Forciniti D; Hamilton WA
    J Colloid Interface Sci; 2005 May; 285(2):458-68. PubMed ID: 15837460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron reflection from liquid interfaces.
    Thomas RK
    Annu Rev Phys Chem; 2004; 55():391-426. PubMed ID: 15117258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-induced unfolding of human lactoferrin.
    Lu JR; Perumal S; Zhao X; Miano F; Enea V; Heenan RR; Penfold J
    Langmuir; 2005 Apr; 21(8):3354-61. PubMed ID: 15807574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.
    Sharma AC; Harrawood BP; Bender JE; Tourassi GD; Kapadia AJ
    Phys Med Biol; 2007 Oct; 52(20):6117-31. PubMed ID: 17921575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasielastic neutron scattering and relaxation processes in proteins: analytical and simulation-based models.
    Kneller GR
    Phys Chem Chem Phys; 2005 Jul; 7(13):2641-55. PubMed ID: 16189576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The low-temperature dynamic crossover phenomenon in protein hydration water: simulations vs experiments.
    Lagi M; Chu X; Kim C; Mallamace F; Baglioni P; Chen SH
    J Phys Chem B; 2008 Feb; 112(6):1571-5. PubMed ID: 18205352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of a hydroxyl conformation in aqueous xylose using neutron scattering and molecular dynamics.
    Mason PE; Neilson GW; Enderby JE; Saboungi ML; Brady JW
    J Phys Chem B; 2006 Feb; 110(7):2981-3. PubMed ID: 16494297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the performance of biomaterials through molecular modeling: crossing the bridge between their intrinsic properties and the surface adsorption of proteins.
    Raffaini G; Ganazzoli F
    Macromol Biosci; 2007 May; 7(5):552-66. PubMed ID: 17477442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An access to buried interfaces: the X-ray reflectivity set-up of BL9 at DELTA.
    Paulus M; Lietz D; Sternemann C; Shokuie K; Evers F; Tolan M; Czeslik C; Winter R
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):600-5. PubMed ID: 18955766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive adsorption of proteins and low-molecular-weight surfactants: computer simulation and microscopic imaging.
    Pugnaloni LA; Dickinson E; Ettelaie R; Mackie AR; Wilde PJ
    Adv Colloid Interface Sci; 2004 Jan; 107(1):27-49. PubMed ID: 14962406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron scattering in concrete and wood: Part II--Oblique incidence.
    Facure A; Silva AX; Rivera JC; Falcão RC
    Radiat Prot Dosimetry; 2008; 128(3):367-74. PubMed ID: 17673488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of neutron backscattering from concrete walls in the dense plasma focus laboratory of Bologna University.
    Frignani M; Mostacci D; Rocchi F; Sumini M
    Radiat Prot Dosimetry; 2005; 115(1-4):380-5. PubMed ID: 16381750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron diffraction and computer simulation studies of D-xylose.
    Mason PE; Neilson GW; Enderby JE; Saboungi ML; Brady JW
    J Am Chem Soc; 2005 Aug; 127(31):10991-8. PubMed ID: 16076206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The analyzer in neutron protein crystallography.
    Nunes AC; Norvell JC
    Brookhaven Symp Biol; 1976 May; (27):VII57-VII66. PubMed ID: 963589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Hofmeister effects on the density profile of protein adsorbates: a neutron reflectivity study.
    Evers F; Steitz R; Tolan M; Czeslik C
    J Phys Chem B; 2009 Jun; 113(25):8462-5. PubMed ID: 19485316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversibility and irreversibility of adsorption of surfactants and proteins at liquid interfaces.
    Fainerman VB; Miller R; Ferri JK; Watzke H; Leser ME; Michel M
    Adv Colloid Interface Sci; 2006 Nov; 123-126():163-71. PubMed ID: 16843423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein adsorption on the hydrophilic surface of a glassy polymer: a computer simulation study.
    Raffaini G; Ganazzoli F
    Phys Chem Chem Phys; 2006 Jun; 8(23):2765-72. PubMed ID: 16763710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of n-alkane layers at the vapor/water interface.
    Kwon OS; Jing H; Shin K; Wang X; Satija SK
    Langmuir; 2007 Nov; 23(24):12249-53. PubMed ID: 17956139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron scattering in concrete and wood.
    Facure A; Silva AX; Falcão RC; Crispim VR
    Radiat Prot Dosimetry; 2006; 119(1-4):514-7. PubMed ID: 16565202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.