These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 125171)

  • 21. Effects of alpha-methyl-p-tyrosine, p-chlorophenylalanine, l-beta-(3,4-dihydroxyphenyl)alanine, 5-hydroxytryptophan and diethyldithiocarbamate on the analgesic activity of morphine and methylamphetamine in the mouse.
    Major CT; Pleuvry BJ
    Br J Pharmacol; 1971 Aug; 42(4):512-21. PubMed ID: 4256024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Central action of narcotic analgesics. VII. The role of serotonin in the development of morphine tolerance in the locomotor activity test in mice and rats.
    Langwiński R; Fidecka S
    Pol J Pharmacol Pharm; 1981; 33(2):193-202. PubMed ID: 6458804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversal by methysergide of inhibition of insulin secretion by prostaglandin E in the dog.
    Robertson RP; Guest RJ
    J Clin Invest; 1978 Nov; 62(5):1014-9. PubMed ID: 361755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristic of antinociceptive effect of a tetrapeptide, Asn-Ala-Gly-Ala (NAGA).
    Iijima M; Kubota K; Matsuoka Y; Uruno T; Satoh S; Ueki M; Matsui S
    J Pharmacobiodyn; 1985 Jul; 8(7):549-56. PubMed ID: 4067816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurotransmitter-blocking agents influence antinociceptive effects of carbamazepine, baclofen, pentazocine and morphine on bradykinin-induced trigeminal pain.
    Foong FW; Satoh M
    Neuropharmacology; 1984 Jun; 23(6):633-6. PubMed ID: 6146940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possible interrelationship between the antinociceptive effect of morphine and brain 5-hydroxytryptamine in albino rats.
    Sanyal AK; Srivastava DN; Bhattacharya SK
    Indian J Med Res; 1981 May; 73():787-92. PubMed ID: 7262953
    [No Abstract]   [Full Text] [Related]  

  • 27. Mouse brain catecholamines, 5-hydroxytryptamine and the antinociceptive activity of pethidine.
    Pleuvry BJ
    Eur J Pharmacol; 1975 Dec; 34(2):351-61. PubMed ID: 1234554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biogenic amines and narcotic effects. I. Modification of morphine-induced analgesia and motor activity after alteration of cerebral amine levels.
    Buxbaum DM; Yarbrough GG; Carter ME
    J Pharmacol Exp Ther; 1973 May; 185(2):317-27. PubMed ID: 4267383
    [No Abstract]   [Full Text] [Related]  

  • 29. Central and systemic morphine-induced antinociception in mice: contribution of descending serotonergic and noradrenergic pathways.
    Wigdor S; Wilcox GL
    J Pharmacol Exp Ther; 1987 Jul; 242(1):90-5. PubMed ID: 3612540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Possible involvement of a central noradrenergic system in automutilation induced by clonidine in mice.
    Razzak A; Fujiwara M; Oishi R; Ueki S
    Jpn J Pharmacol; 1977 Feb; 27(1):145-52. PubMed ID: 140948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antagonism of morphine analgesia by reserpine and alpha-methyltyrosine and the role played by catecholamines in morphine analgesic action.
    Verri RA; Graeff FG; Corrado AP
    J Pharm Pharmacol; 1967 Apr; 19(4):264-5. PubMed ID: 4382313
    [No Abstract]   [Full Text] [Related]  

  • 32. A probable role for norepinephrine in feeding after hypothalamic injection of morphine.
    Tepperman FS; Hirst M; Gowdey CW
    Pharmacol Biochem Behav; 1981 Oct; 15(4):555-8. PubMed ID: 7291259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Central monoamines and antinociceptive drug action.
    Görlitz BD; Frey HH
    Eur J Pharmacol; 1972 Nov; 20(2):171-80. PubMed ID: 4265524
    [No Abstract]   [Full Text] [Related]  

  • 34. Effects of reserpine, alpha-methyl-p-tyrosine, p-chlorophenylalanine and 5,7-dihydroxytryptamine on the hippocampal kindling effect in rats.
    Araki H; Aihara H; Watanabe S; Yamamoto T; Ueki S
    Jpn J Pharmacol; 1983 Dec; 33(6):1177-82. PubMed ID: 6230476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mode of antinociceptive action of flupirtine in the rat.
    Szelenyi I; Nickel B; Borbe HO; Brune K
    Br J Pharmacol; 1989 Jul; 97(3):835-42. PubMed ID: 2569346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study of monoaminergic involvement in the antinociceptive action of E-2078, morphine and U-50,488E.
    Nakazawa T; Yamanishi Y; Kaneko T
    J Pharmacol Exp Ther; 1991 May; 257(2):748-53. PubMed ID: 1674534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on the mode of action of ambrein as a new antinociceptive compound.
    Taha SA
    Jpn J Pharmacol; 1992 Oct; 60(2):67-71. PubMed ID: 1479744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reserpine and the monoaminergic regulation of adrenal dopamine beta-hydroxylase activity.
    Lima L; Sourkes TL
    Neuroscience; 1986; 17(1):235-45. PubMed ID: 2938024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dependence of the anti-nociceptive effect of morphine and other analgesic agents on spinal motor activity after central monoamine depletion.
    Grossmann W; Jurna I; Nell T; Theres C
    Eur J Pharmacol; 1973 Oct; 24(1):67-77. PubMed ID: 4756170
    [No Abstract]   [Full Text] [Related]  

  • 40. Compulsive gnawing in rats after implantation of drugs into the ventral thalamus. A contribution to the mechanism of morphine action.
    Bergmann F; Chaimovitz M; Pasternak V; Ramu A
    Br J Pharmacol; 1974 Jun; 51(2):197-205. PubMed ID: 4281333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.