These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 12517105)
21. Changes in volatile compounds of carrots (Daucus carota L.) during refrigerated and frozen storage. Kjeldsen F; Christensen LP; Edelenbos M J Agric Food Chem; 2003 Aug; 51(18):5400-7. PubMed ID: 12926889 [TBL] [Abstract][Full Text] [Related]
22. [Characterization of aroma active compounds in blood orange juice by solid phase microextraction and gas chromatography-mass spectrometry-olfactometry]. Qiao Y; Xie B; Zhang Y; Zhang Y; Pan S Se Pu; 2008 Jul; 26(4):509-14. PubMed ID: 18959252 [TBL] [Abstract][Full Text] [Related]
23. Changes of the volatile profile and artifact formation in Daidai (Citrus aurantium) cold-pressed peel oil on storage. Njoroge SM; Ukeda H; Sawamura M J Agric Food Chem; 2003 Jul; 51(14):4029-35. PubMed ID: 12822942 [TBL] [Abstract][Full Text] [Related]
24. Application of HS-SPME and GC-MS to characterization of volatile compounds emitted from Osmanthus flowers. Deng C; Song G; Hu Y Ann Chim; 2004 Dec; 94(12):921-7. PubMed ID: 15689028 [TBL] [Abstract][Full Text] [Related]
25. Analysis of the volatile components of five Turkish Rhododendron species by headspace solid-phase microextraction and GC-MS (HS-SPME-GC-MS). Tasdemir D; Demirci B; Demirci F; Dönmez AA; Baser KH; Rüedi P Z Naturforsch C J Biosci; 2003; 58(11-12):797-803. PubMed ID: 14713153 [TBL] [Abstract][Full Text] [Related]
26. Aroma Profile of Rubus ulmifolius Flowers and Fruits During Different Ontogenetic Phases. Bandeira Reidel RV; Melai B; Cioni P; Flamini G; Pistelli L Chem Biodivers; 2016 Dec; 13(12):1776-1784. PubMed ID: 27449284 [TBL] [Abstract][Full Text] [Related]
27. [Analysis of headspace constituents of Gardenia flower by GC/MS with solid-phase microextraction and dynamic headspace sampling]. Liu BZ; Gao Y Se Pu; 2000 Sep; 18(5):452-5. PubMed ID: 12541711 [TBL] [Abstract][Full Text] [Related]
28. Characterization of volatiles in Costa Rican guava [Psidium friedrichsthalianum (Berg) Niedenzu] fruit. Pino JA; Marbot R; Vázquez C J Agric Food Chem; 2002 Oct; 50(21):6023-6. PubMed ID: 12358475 [TBL] [Abstract][Full Text] [Related]
29. Citrus leaf volatiles as affected by developmental stage and genetic type. Azam M; Jiang Q; Zhang B; Xu C; Chen K Int J Mol Sci; 2013 Aug; 14(9):17744-66. PubMed ID: 23994837 [TBL] [Abstract][Full Text] [Related]
30. Characterization of novel varietal floral hop aromas by headspace solid phase microextraction and gas chromatography-mass spectrometry/olfactometry. Van Opstaele F; De Causmaecker B; Aerts G; De Cooman L J Agric Food Chem; 2012 Dec; 60(50):12270-81. PubMed ID: 23186043 [TBL] [Abstract][Full Text] [Related]
31. The composition of volatile aroma components, flavanones, and polymethoxylated flavones in Shiikuwasha (Citrus depressa Hayata) peels of different cultivation lines. Asikin Y; Taira I; Inafuku-Teramoto S; Sumi H; Ohta H; Takara K; Wada K J Agric Food Chem; 2012 Aug; 60(32):7973-80. PubMed ID: 22804782 [TBL] [Abstract][Full Text] [Related]
32. Comparison of volatile concentrations in hand-squeezed juices of four different lemon varieties. Allegrone G; Belliardo F; Cabella P J Agric Food Chem; 2006 Mar; 54(5):1844-8. PubMed ID: 16506842 [TBL] [Abstract][Full Text] [Related]
33. Floral scent composition of Plumeria tuberculata analyzed by HS-SPME. Báez D; Pino JA; Morales D Nat Prod Commun; 2012 Jan; 7(1):101-2. PubMed ID: 22428259 [TBL] [Abstract][Full Text] [Related]
34. Application of solid phase-microextraction (SPME) and electronic nose techniques to differentiate volatiles of sesame oils prepared with diverse roasting conditions. Park MH; Jeong MK; Yeo J; Son HJ; Lim CL; Hong EJ; Noh BS; Lee J J Food Sci; 2011; 76(1):C80-8. PubMed ID: 21535659 [TBL] [Abstract][Full Text] [Related]
35. Investigation of the volatile constituents of different Gynura species from two Chinese origins by SPME/GC-MS. Chen J; Adams A; Mangelinckx S; Ren BR; Li WL; Wang ZT; De Kimpe N Nat Prod Commun; 2012 May; 7(5):655-7. PubMed ID: 22799100 [TBL] [Abstract][Full Text] [Related]
36. Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.). Díaz-Maroto MC; Pérez-Coello MS; Cabezudo MD J Agric Food Chem; 2002 Jul; 50(16):4520-4. PubMed ID: 12137470 [TBL] [Abstract][Full Text] [Related]
37. Identification and characterization of volatile compounds in Lentinula edodes during vacuum freeze-drying. Lu X; Hou H; Fang D; Hu Q; Chen J; Zhao L J Food Biochem; 2022 Jun; 46(6):e13814. PubMed ID: 34089191 [TBL] [Abstract][Full Text] [Related]
38. A comparison of volatile components from the peel of Ohshima no. 1 with its parent cultivars. Akakabe Y; Kusunoki A; Ikeda Y; Tanaka M Biosci Biotechnol Biochem; 2008 Jul; 72(7):1969-72. PubMed ID: 18603774 [TBL] [Abstract][Full Text] [Related]
39. Characterization of traditional Istrian dry-cured ham by means of physical and chemical analyses and volatile compounds. Marušić N; Petrović M; Vidaček S; Petrak T; Medić H Meat Sci; 2011 Aug; 88(4):786-90. PubMed ID: 21435796 [TBL] [Abstract][Full Text] [Related]
40. Determination of volatile components in fresh, frozen, and freeze-dried Padrón-type peppers by gas chromatography-mass spectrometry using dynamic headspace sampling and microwave desorption. Oruña-Concha MJ; López-Hernández J; Simal-Lozano JA; Simal-Gándara J; González-Castro MJ; de la Cruz García C J Chromatogr Sci; 1998 Dec; 36(12):583-8. PubMed ID: 9870308 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]