These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
606 related articles for article (PubMed ID: 12517147)
1. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity. Wong DM; Greenblatt HM; Dvir H; Carlier PR; Han YF; Pang YP; Silman I; Sussman JL J Am Chem Soc; 2003 Jan; 125(2):363-73. PubMed ID: 12517147 [TBL] [Abstract][Full Text] [Related]
2. Crystal packing mediates enantioselective ligand recognition at the peripheral site of acetylcholinesterase. Haviv H; Wong DM; Greenblatt HM; Carlier PR; Pang YP; Silman I; Sussman JL J Am Chem Soc; 2005 Aug; 127(31):11029-36. PubMed ID: 16076210 [TBL] [Abstract][Full Text] [Related]
3. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design. Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167 [TBL] [Abstract][Full Text] [Related]
4. How does huperzine A enter and leave the binding gorge of acetylcholinesterase? Steered molecular dynamics simulations. Xu Y; Shen J; Luo X; Silman I; Sussman JL; Chen K; Jiang H J Am Chem Soc; 2003 Sep; 125(37):11340-9. PubMed ID: 16220957 [TBL] [Abstract][Full Text] [Related]
5. Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge. Rydberg EH; Brumshtein B; Greenblatt HM; Wong DM; Shaya D; Williams LD; Carlier PR; Pang YP; Silman I; Sussman JL J Med Chem; 2006 Sep; 49(18):5491-500. PubMed ID: 16942022 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and docking studies of alkylene-linked dimers of (-)-huperzine A. Jin G; Luo X; He X; Jiang H; Zhang H; Bai D Arzneimittelforschung; 2003; 53(11):753-7. PubMed ID: 14677369 [TBL] [Abstract][Full Text] [Related]
7. Bivalent ligands derived from Huperzine A as acetylcholinesterase inhibitors. Haviv H; Wong DM; Silman I; Sussman JL Curr Top Med Chem; 2007; 7(4):375-87. PubMed ID: 17305579 [TBL] [Abstract][Full Text] [Related]
8. Mouse acetylcholinesterase unliganded and in complex with huperzine A: a comparison of molecular dynamics simulations. Tara S; Straatsma TP; McCammon JA Biopolymers; 1999 Jul; 50(1):35-43. PubMed ID: 10341665 [TBL] [Abstract][Full Text] [Related]
9. Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands. Szegletes T; Mallender WD; Rosenberry TL Biochemistry; 1998 Mar; 37(12):4206-16. PubMed ID: 9521743 [TBL] [Abstract][Full Text] [Related]
10. Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica. Koellner G; Kryger G; Millard CB; Silman I; Sussman JL; Steiner T J Mol Biol; 2000 Feb; 296(2):713-35. PubMed ID: 10669619 [TBL] [Abstract][Full Text] [Related]
11. The crystal structure of a complex of acetylcholinesterase with a bis-(-)-nor-meptazinol derivative reveals disruption of the catalytic triad. Paz A; Xie Q; Greenblatt HM; Fu W; Tang Y; Silman I; Qiu Z; Sussman JL J Med Chem; 2009 Apr; 52(8):2543-9. PubMed ID: 19326912 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics of mouse acetylcholinesterase complexed with huperzine A. Tara S; Helms V; Straatsma TP; McCammon JA Biopolymers; 1999 Oct; 50(4):347-59. PubMed ID: 10423544 [TBL] [Abstract][Full Text] [Related]
13. 3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 A resolution: kinetic and molecular dynamic correlates. Dvir H; Wong DM; Harel M; Barril X; Orozco M; Luque FJ; Muñoz-Torrero D; Camps P; Rosenberry TL; Silman I; Sussman JL Biochemistry; 2002 Mar; 41(9):2970-81. PubMed ID: 11863435 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of Huperzine A Dissociation from Acetylcholinesterase via Multiple Unbinding Pathways. Rydzewski J; Jakubowski R; Nowak W; Grubmüller H J Chem Theory Comput; 2018 Jun; 14(6):2843-2851. PubMed ID: 29715428 [TBL] [Abstract][Full Text] [Related]
15. The 'aromatic patch' of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors. Ariel N; Ordentlich A; Barak D; Bino T; Velan B; Shafferman A Biochem J; 1998 Oct; 335 ( Pt 1)(Pt 1):95-102. PubMed ID: 9742217 [TBL] [Abstract][Full Text] [Related]
16. Structural insights into conformational flexibility at the peripheral site and within the active center gorge of AChE. Bourne Y; Radić Z; Kolb HC; Sharpless KB; Taylor P; Marchot P Chem Biol Interact; 2005 Dec; 157-158():159-65. PubMed ID: 16259971 [TBL] [Abstract][Full Text] [Related]
18. Role of tyrosine 337 in the binding of huperzine A to the active site of human acetylcholinesterase. Ashani Y; Grunwald J; Kronman C; Velan B; Shafferman A Mol Pharmacol; 1994 Mar; 45(3):555-60. PubMed ID: 8145739 [TBL] [Abstract][Full Text] [Related]
19. Probing Torpedo californica acetylcholinesterase catalytic gorge with two novel bis-functional galanthamine derivatives. Bartolucci C; Haller LA; Jordis U; Fels G; Lamba D J Med Chem; 2010 Jan; 53(2):745-51. PubMed ID: 20025280 [TBL] [Abstract][Full Text] [Related]
20. Study on dual-site inhibitors of acetylcholinesterase: Highly potent derivatives of bis- and bifunctional huperzine B. He XC; Feng S; Wang ZF; Shi Y; Zheng S; Xia Y; Jiang H; Tang XC; Bai D Bioorg Med Chem; 2007 Feb; 15(3):1394-408. PubMed ID: 17126020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]