These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 12517167)

  • 1. Direct electrochemistry of a bacterial sulfite dehydrogenase.
    Aguey-Zinsou KF; Bernhardt PV; Kappler U; McEwan AG
    J Am Chem Soc; 2003 Jan; 125(2):530-5. PubMed ID: 12517167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramolecular electron transfer in a bacterial sulfite dehydrogenase.
    Feng C; Kappler U; Tollin G; Enemark JH
    J Am Chem Soc; 2003 Dec; 125(48):14696-7. PubMed ID: 14640631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfite:Cytochrome c oxidoreductase from Thiobacillus novellus. Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family.
    Kappler U; Bennett B; Rethmeier J; Schwarz G; Deutzmann R; McEwan AG; Dahl C
    J Biol Chem; 2000 May; 275(18):13202-12. PubMed ID: 10788424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short circuiting a sulfite oxidising enzyme with direct electrochemistry: active site substitutions and their effect on catalysis and electron transfer.
    Rapson TD; Kappler U; Hanson GR; Bernhardt PV
    Biochim Biophys Acta; 2011 Jan; 1807(1):108-18. PubMed ID: 20863809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive and stable electrochemical sulfite biosensor incorporating a bacterial sulfite dehydrogenase.
    Kalimuthu P; Tkac J; Kappler U; Davis JJ; Bernhardt PV
    Anal Chem; 2010 Sep; 82(17):7374-9. PubMed ID: 20698497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and structural evidence for the importance of Tyr236 for the integrity of the Mo active site in a bacterial sulfite dehydrogenase.
    Kappler U; Bailey S; Feng C; Honeychurch MJ; Hanson GR; Bernhardt PV; Tollin G; Enemark JH
    Biochemistry; 2006 Aug; 45(32):9696-705. PubMed ID: 16893171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical studies of arsenite oxidase: an unusual example of a highly cooperative two-electron molybdenum center.
    Hoke KR; Cobb N; Armstrong FA; Hille R
    Biochemistry; 2004 Feb; 43(6):1667-74. PubMed ID: 14769044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct catalytic electrochemistry of sulfite dehydrogenase: mechanistic insights and contrasts with related Mo enzymes.
    Rapson TD; Kappler U; Bernhardt PV
    Biochim Biophys Acta; 2008 Oct; 1777(10):1319-25. PubMed ID: 18601898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A voltammetric study of interdomain electron transfer within sulfite oxidase.
    Elliott SJ; McElhaney AE; Feng C; Enemark JH; Armstrong FA
    J Am Chem Soc; 2002 Oct; 124(39):11612-3. PubMed ID: 12296723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein film voltammetry of Rhodobacter capsulatus xanthine dehydrogenase.
    Aguey-Zinsou KF; Bernhardt PV; Leimkühler S
    J Am Chem Soc; 2003 Dec; 125(50):15352-8. PubMed ID: 14664579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the active site of sulfite dehydrogenase from Starkeya novella.
    Doonan CJ; Kappler U; George GN
    Inorg Chem; 2006 Sep; 45(18):7488-92. PubMed ID: 16933953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first non-turnover voltammetric response from a molybdenum enzyme: direct electrochemistry of dimethylsulfoxide reductase from Rhodobacter capsulatus.
    Aguey-Zinsou KF; Bernhardt PV; McEwan AG; Ridge JP
    J Biol Inorg Chem; 2002 Sep; 7(7-8):879-83. PubMed ID: 12203025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical investigation of immobilized hemoglobin: redox chemistry and enzymatic catalysis.
    Liu HH; Zou GL
    J Biochem Biophys Methods; 2006 Aug; 68(2):87-99. PubMed ID: 16762418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide.
    Salimi A; Sharifi E; Noorbakhsh A; Soltanian S
    Biophys Chem; 2007 Feb; 125(2-3):540-8. PubMed ID: 17166647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17.
    Quentmeier A; Kraft R; Kostka S; Klockenkämper R; Friedrich CG
    Arch Microbiol; 2000 Feb; 173(2):117-25. PubMed ID: 10795683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic-complementary peptide-modified highly ordered pyrolytic graphite electrode for biosensor application.
    Yang H; Fung SY; Sun W; Mikkelsen S; Pritzker M; Chen P
    Biotechnol Prog; 2008; 24(4):964-71. PubMed ID: 19194905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox properties of flavocytochrome c3 from Shewanella frigidimarina NCIMB400.
    Turner KL; Doherty MK; Heering HA; Armstrong FA; Reid GA; Chapman SK
    Biochemistry; 1999 Mar; 38(11):3302-9. PubMed ID: 10079073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallization and preliminary X-ray analysis of sulfite dehydrogenase from Starkeya novella.
    Kappler U; Bailey S
    Acta Crystallogr D Biol Crystallogr; 2004 Nov; 60(Pt 11):2070-2. PubMed ID: 15502330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode.
    Zhou Y; Zhi J; Zou Y; Zhang W; Lee ST
    Anal Chem; 2008 Jun; 80(11):4141-6. PubMed ID: 18447324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct electrochemistry of hemoglobin in dimethyldioctadecyl ammonium bromide film and its electrocatalysis to nitric oxide.
    Liu X; Shang L; Sun Z; Li G
    J Biochem Biophys Methods; 2005 Feb; 62(2):143-51. PubMed ID: 15680284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.