These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 12517173)

  • 1. Internal degrees of freedom, structural motifs, and conformational energetics of the 5'-deoxyadenosyl radical: implications for function in adenosylcobalamin-dependent enzymes. A computational study.
    Khoroshun DV; Warncke K; Ke SC; Musaev DG; Morokuma K
    J Am Chem Soc; 2003 Jan; 125(2):570-9. PubMed ID: 12517173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling.
    Doll KM; Bender BR; Finke RG
    J Am Chem Soc; 2003 Sep; 125(36):10877-84. PubMed ID: 12952467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and thermodynamic characterization of Co(II)-substrate radical pair formation in coenzyme B12-dependent ethanolamine ammonia-lyase in a cryosolvent system by using time-resolved, full-spectrum continuous-wave electron paramagnetic resonance spectroscopy.
    Wang M; Warncke K
    J Am Chem Soc; 2008 Apr; 130(14):4846-58. PubMed ID: 18341340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study of hydrogen bonding potentially stabilizing the 5'-deoxyadenosyl radical from coenzyme B12.
    Friedrich P; Baisch U; Harrington RW; Lyatuu F; Zhou K; Zelder F; McFarlane W; Buckel W; Golding BT
    Chemistry; 2012 Dec; 18(50):16114-22. PubMed ID: 23080006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic radical catalysis: coenzyme B12-dependent diol dehydratase.
    Toraya T
    Chem Rec; 2002; 2(5):352-66. PubMed ID: 12369058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the product radical structure in the Co(II)-product radical pair state of coenzyme B12-dependent ethanolamine deaminase by using three-pulse 2H ESEEM spectroscopy.
    Warncke K
    Biochemistry; 2005 Mar; 44(9):3184-93. PubMed ID: 15736929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical mechanisms in adenosylcobalamin-dependent enzymes.
    Reed GH
    Curr Opin Chem Biol; 2004 Oct; 8(5):477-83. PubMed ID: 15450489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radical mechanisms in adenosylmethionine- and adenosylcobalamin-dependent enzymatic reactions.
    Frey PA; Reed GH
    Arch Biochem Biophys; 2000 Oct; 382(1):6-14. PubMed ID: 11051091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational insights into the mechanism of radical generation in B12-dependent methylmalonyl-CoA mutase.
    Kwiecien RA; Khavrutskii IV; Musaev DG; Morokuma K; Banerjee R; Paneth P
    J Am Chem Soc; 2006 Feb; 128(4):1287-92. PubMed ID: 16433547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-phase acidity studies of multiple sites of adenine and adenine derivatives.
    Sharma S; Lee JK
    J Org Chem; 2004 Oct; 69(21):7018-25. PubMed ID: 15471447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic roles of active-site amino acid residues of coenzyme B12-dependent diol dehydratase: protonation state of histidine and pull effect of glutamate.
    Kamachi T; Toraya T; Yoshizawa K
    J Am Chem Soc; 2004 Dec; 126(49):16207-16. PubMed ID: 15584757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational mutation analysis of hydrogen abstraction and radical rearrangement steps in the catalysis of coenzyme B12-dependent diol dehydratase.
    Kamachi T; Toraya T; Yoshizawa K
    Chemistry; 2007; 13(28):7864-73. PubMed ID: 17614304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen-atom abstraction from the adenine-uracil base pair.
    Kim S; Meehan T; Schaefer HF
    J Phys Chem A; 2007 Jul; 111(29):6806-12. PubMed ID: 17388361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational investigation of hydrogen abstraction from 2-aminoethanol by the 1,5-dideoxyribose-5-yl radical: a model study of a reaction occurring in the active site of ethanolamine ammonia lyase.
    Semialjac M; Schwarz H
    Chemistry; 2004 Jun; 10(11):2781-8. PubMed ID: 15195308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial step of B12-dependent enzymatic catalysis: energetic implications regarding involvement of the one-electron-reduced form of adenosylcobalamin cofactor.
    Kozlowski PM; Kamachi T; Kumar M; Yoshizawa K
    J Biol Inorg Chem; 2012 Feb; 17(2):293-300. PubMed ID: 22033630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radical mechanisms of enzymatic catalysis.
    Frey PA
    Annu Rev Biochem; 2001; 70():121-48. PubMed ID: 11395404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosylcobalamin enzymes: theory and experiment begin to converge.
    Marsh EN; Meléndez GD
    Biochim Biophys Acta; 2012 Nov; 1824(11):1154-64. PubMed ID: 22516318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational studies of gas-phase ribose and 2-deoxyribose by density functional, second order PT and multi-level method calculations: the pyranoses, furanoses, and open-chain structures.
    Szczepaniak M; Moc J
    Carbohydr Res; 2014 Jan; 384():20-36. PubMed ID: 24342347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes.
    Cheng Q; Gu J; Compaan KR; Schaefer HF
    Chemistry; 2010 Oct; 16(39):11848-58. PubMed ID: 20878802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How the Co-C bond is cleaved in coenzyme B12 enzymes: a theoretical study.
    Jensen KP; Ryde U
    J Am Chem Soc; 2005 Jun; 127(25):9117-28. PubMed ID: 15969590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.