These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 12517982)

  • 1. Redox signaling in the growth and development of colonial hydroids.
    Blackstone NW
    J Exp Biol; 2003 Feb; 206(Pt 4):651-8. PubMed ID: 12517982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox signaling in colonial hydroids: many pathways for peroxide.
    Blackstone NW; Bivins MJ; Cherry KS; Fletcher RE; Geddes GC
    J Exp Biol; 2005 Jan; 208(Pt 2):383-90. PubMed ID: 15634856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox control in development and evolution: evidence from colonial hydroids.
    Blackstone NW
    J Exp Biol; 1999 Dec; 202 Pt 24():3541-53. PubMed ID: 10574731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implication of mitochondria-derived reactive oxygen species, cytochrome C and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells.
    Suzuki S; Higuchi M; Proske RJ; Oridate N; Hong WK; Lotan R
    Oncogene; 1999 Nov; 18(46):6380-7. PubMed ID: 10597238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria as integrators of information in an early-evolving animal: insights from a triterpenoid metabolite.
    Blackstone NW; Kelly MM; Haridas V; Gutterman JU
    Proc Biol Sci; 2005 Mar; 272(1562):527-31. PubMed ID: 15799949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species and the regulation of hyperproliferation in a colonial hydroid.
    Harmata KL; Blackstone NW
    Physiol Biochem Zool; 2011; 84(5):481-93. PubMed ID: 21897085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox state, reactive oxygen species and adaptive growth in colonial hydroids.
    Blackstone NW
    J Exp Biol; 2001 Jun; 204(Pt 11):1845-53. PubMed ID: 11441027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain.
    Frerman FE
    Biochim Biophys Acta; 1987 Sep; 893(2):161-9. PubMed ID: 3620453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation.
    Ježek J; Engstová H; Ježek P
    Biochim Biophys Acta Bioenerg; 2017 Sep; 1858(9):750-762. PubMed ID: 28554565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential.
    Sipos I; Tretter L; Adam-Vizi V
    Neurochem Res; 2003 Oct; 28(10):1575-81. PubMed ID: 14570403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TNF-α mediates mitochondrial uncoupling and enhances ROS-dependent cell migration via NF-κB activation in liver cells.
    Kastl L; Sauer SW; Ruppert T; Beissbarth T; Becker MS; Süss D; Krammer PH; Gülow K
    FEBS Lett; 2014 Jan; 588(1):175-83. PubMed ID: 24316229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-Response Relationships for Experimental Heterochrony in a Colonial Hydroid.
    Blackstone NW
    Biol Bull; 1997 Aug; 193(1):47-61. PubMed ID: 28581847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge.
    Schwarzländer M; Fricker MD; Sweetlove LJ
    Biochim Biophys Acta; 2009 May; 1787(5):468-75. PubMed ID: 19366606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria.
    Vrbacký M; Drahota Z; Mrácek T; Vojtísková A; Jesina P; Stopka P; Houstek J
    Biochim Biophys Acta; 2007 Jul; 1767(7):989-97. PubMed ID: 17560536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial modulation-induced activation of vagal sensory neuronal subsets by antimycin A, but not CCCP or rotenone, correlates with mitochondrial superoxide production.
    Stanford KR; Taylor-Clark TE
    PLoS One; 2018; 13(5):e0197106. PubMed ID: 29734380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of reactive oxygen species by mitochondria: central role of complex III.
    Chen Q; Vazquez EJ; Moghaddas S; Hoppel CL; Lesnefsky EJ
    J Biol Chem; 2003 Sep; 278(38):36027-31. PubMed ID: 12840017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species (ROS) play a critical role in the cAMP-induced activation of Ras and the phosphorylation of ERK1/2 in Leydig cells.
    Tai P; Ascoli M
    Mol Endocrinol; 2011 May; 25(5):885-93. PubMed ID: 21330403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.