BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12517982)

  • 1. Redox signaling in the growth and development of colonial hydroids.
    Blackstone NW
    J Exp Biol; 2003 Feb; 206(Pt 4):651-8. PubMed ID: 12517982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox signaling in colonial hydroids: many pathways for peroxide.
    Blackstone NW; Bivins MJ; Cherry KS; Fletcher RE; Geddes GC
    J Exp Biol; 2005 Jan; 208(Pt 2):383-90. PubMed ID: 15634856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox control in development and evolution: evidence from colonial hydroids.
    Blackstone NW
    J Exp Biol; 1999 Dec; 202 Pt 24():3541-53. PubMed ID: 10574731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implication of mitochondria-derived reactive oxygen species, cytochrome C and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells.
    Suzuki S; Higuchi M; Proske RJ; Oridate N; Hong WK; Lotan R
    Oncogene; 1999 Nov; 18(46):6380-7. PubMed ID: 10597238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria as integrators of information in an early-evolving animal: insights from a triterpenoid metabolite.
    Blackstone NW; Kelly MM; Haridas V; Gutterman JU
    Proc Biol Sci; 2005 Mar; 272(1562):527-31. PubMed ID: 15799949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species and the regulation of hyperproliferation in a colonial hydroid.
    Harmata KL; Blackstone NW
    Physiol Biochem Zool; 2011; 84(5):481-93. PubMed ID: 21897085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox state, reactive oxygen species and adaptive growth in colonial hydroids.
    Blackstone NW
    J Exp Biol; 2001 Jun; 204(Pt 11):1845-53. PubMed ID: 11441027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain.
    Frerman FE
    Biochim Biophys Acta; 1987 Sep; 893(2):161-9. PubMed ID: 3620453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation.
    Ježek J; Engstová H; Ježek P
    Biochim Biophys Acta Bioenerg; 2017 Sep; 1858(9):750-762. PubMed ID: 28554565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential.
    Sipos I; Tretter L; Adam-Vizi V
    Neurochem Res; 2003 Oct; 28(10):1575-81. PubMed ID: 14570403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TNF-α mediates mitochondrial uncoupling and enhances ROS-dependent cell migration via NF-κB activation in liver cells.
    Kastl L; Sauer SW; Ruppert T; Beissbarth T; Becker MS; Süss D; Krammer PH; Gülow K
    FEBS Lett; 2014 Jan; 588(1):175-83. PubMed ID: 24316229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-Response Relationships for Experimental Heterochrony in a Colonial Hydroid.
    Blackstone NW
    Biol Bull; 1997 Aug; 193(1):47-61. PubMed ID: 28581847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge.
    Schwarzländer M; Fricker MD; Sweetlove LJ
    Biochim Biophys Acta; 2009 May; 1787(5):468-75. PubMed ID: 19366606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria.
    Vrbacký M; Drahota Z; Mrácek T; Vojtísková A; Jesina P; Stopka P; Houstek J
    Biochim Biophys Acta; 2007 Jul; 1767(7):989-97. PubMed ID: 17560536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial modulation-induced activation of vagal sensory neuronal subsets by antimycin A, but not CCCP or rotenone, correlates with mitochondrial superoxide production.
    Stanford KR; Taylor-Clark TE
    PLoS One; 2018; 13(5):e0197106. PubMed ID: 29734380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of reactive oxygen species by mitochondria: central role of complex III.
    Chen Q; Vazquez EJ; Moghaddas S; Hoppel CL; Lesnefsky EJ
    J Biol Chem; 2003 Sep; 278(38):36027-31. PubMed ID: 12840017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species (ROS) play a critical role in the cAMP-induced activation of Ras and the phosphorylation of ERK1/2 in Leydig cells.
    Tai P; Ascoli M
    Mol Endocrinol; 2011 May; 25(5):885-93. PubMed ID: 21330403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.