These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 12517993)

  • 1. Mechanics of cuticular elastic energy storage in leg joints lacking extensor muscles in arachnids.
    Sensenig AT; Shultz JW
    J Exp Biol; 2003 Feb; 206(Pt 4):771-84. PubMed ID: 12517993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanics of elastic loading and recoil in anuran jumping.
    Astley HC; Roberts TJ
    J Exp Biol; 2014 Dec; 217(Pt 24):4372-8. PubMed ID: 25520385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydraulic leg extension is not necessarily the main drive in large spiders.
    Weihmann T; Günther M; Blickhan R
    J Exp Biol; 2012 Feb; 215(Pt 4):578-83. PubMed ID: 22279064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ballistic movements of jumping legs implemented as variable components of cricket behaviour.
    Hustert R; Baldus M
    J Exp Biol; 2010 Dec; 213(Pt 23):4055-64. PubMed ID: 21075947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the Determinants of Mechanical Advantage During Jumping: Consequences for Spring- and Muscle-Driven Movement.
    Olberding JP; Deban SM; Rosario MV; Azizi E
    Integr Comp Biol; 2019 Dec; 59(6):1515-1524. PubMed ID: 31397849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. External work and potential for elastic storage at the limb joints of running dogs.
    Gregersen CS; Silverton NA; Carrier DR
    J Exp Biol; 1998 Dec; 201(Pt 23):3197-210. PubMed ID: 9808833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swing Velocity Profiles of Small Limbs Can Arise from Transient Passive Torques of the Antagonist Muscle Alone.
    von Twickel A; Guschlbauer C; Hooper SL; Büschges A
    Curr Biol; 2019 Jan; 29(1):1-12.e7. PubMed ID: 30581019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control.
    Dallmann CJ; Dürr V; Schmitz J
    Proc Biol Sci; 2016 Jan; 283(1823):. PubMed ID: 26791608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive control for backward quadrupedal walking VI. metatarsophalangeal joint dynamics and motor patterns of digit muscles.
    Trank TV; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):678-9. PubMed ID: 8714644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of non-extensor muscles of the leg to maximal-effort countermovement jumping.
    Nagano A; Komura T; Yoshioka S; Fukashiro S
    Biomed Eng Online; 2005 Sep; 4():52. PubMed ID: 16143047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of locomotion in arachnida: The hydraulic pressure pump of the giant whipscorpion, Mastigoproctus Giganteus (Uropygi).
    Shultz JW
    J Morphol; 1991 Oct; 210(1):13-31. PubMed ID: 29865543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-contraction and passive forces facilitate load compensation of aimed limb movements.
    Zakotnik J; Matheson T; Dürr V
    J Neurosci; 2006 May; 26(19):4995-5007. PubMed ID: 16687491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of human ankle plantar flexor muscle-tendon interaction and architecture in maximal vertical jumping examined in vivo.
    Farris DJ; Lichtwark GA; Brown NA; Cresswell AG
    J Exp Biol; 2016 Feb; 219(Pt 4):528-34. PubMed ID: 26685172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jumping mechanisms and performance in beetles. II. Weevils (Coleoptera: Curculionidae: Rhamphini).
    Nadein K; Betz O
    Arthropod Struct Dev; 2018 Mar; 47(2):131-143. PubMed ID: 29496627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the limits to the hydraulic leg mechanism: the effects of speed and size on limb kinematics in vagrant arachnids.
    Boehm C; Schultz J; Clemente C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 Mar; 207(2):105-116. PubMed ID: 33666723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion.
    Moritz CT; Farley CT
    J Exp Biol; 2005 Mar; 208(Pt 5):939-49. PubMed ID: 15755892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a vertebrate catapult: elastic energy storage in the plantaris tendon during frog jumping.
    Astley HC; Roberts TJ
    Biol Lett; 2012 Jun; 8(3):386-9. PubMed ID: 22090204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.