These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 12518316)
21. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production. Teh KY; Lutz AE J Biotechnol; 2010 May; 147(2):80-7. PubMed ID: 20184925 [TBL] [Abstract][Full Text] [Related]
22. Experimental investigations of multiple steady states in aerobic continuous cultivations of Saccharomyces cerevisiae. Lei F; Olsson L; Jørgensen SB Biotechnol Bioeng; 2003 Jun; 82(7):766-77. PubMed ID: 12701142 [TBL] [Abstract][Full Text] [Related]
23. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Nissen TL; Anderlund M; Nielsen J; Villadsen J; Kielland-Brandt MC Yeast; 2001 Jan; 18(1):19-32. PubMed ID: 11124698 [TBL] [Abstract][Full Text] [Related]
24. NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Almeida JR; Röder A; Modig T; Laadan B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2008 Apr; 78(6):939-45. PubMed ID: 18330568 [TBL] [Abstract][Full Text] [Related]
26. Fed batch culture of Saccharomyces cerevisiae: a perspective of computer control to enhance the productivity in baker's yeast cultivation. Aiba S; Nagai S; Nishizawa Y Biotechnol Bioeng; 1976 Jul; 18(7):1001-16. PubMed ID: 782581 [TBL] [Abstract][Full Text] [Related]
27. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Hjersted JL; Henson MA; Mahadevan R Biotechnol Bioeng; 2007 Aug; 97(5):1190-204. PubMed ID: 17243146 [TBL] [Abstract][Full Text] [Related]
28. Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate. Yu KO; Kim SW; Han SO J Biotechnol; 2010 Oct; 150(2):209-14. PubMed ID: 20854852 [TBL] [Abstract][Full Text] [Related]
29. Simplified modeling of fed-batch alcoholic fermentation of sugarcane blackstrap molasses. Converti A; Arni S; Sato S; de Carvalho JC; Aquarone E Biotechnol Bioeng; 2003 Oct; 84(1):88-95. PubMed ID: 12910547 [TBL] [Abstract][Full Text] [Related]
30. Analytical monitoring of alcoholic fermentation using NIR spectroscopy. Blanco M; Peinado AC; Mas J Biotechnol Bioeng; 2004 Nov; 88(4):536-42. PubMed ID: 15470716 [TBL] [Abstract][Full Text] [Related]
32. High-cell-density cultivation for co-production of ergosterol and reduced glutathione by Saccharomyces cerevisiae. Shang F; Wang Z; Tan T Appl Microbiol Biotechnol; 2008 Jan; 77(6):1233-40. PubMed ID: 18071647 [TBL] [Abstract][Full Text] [Related]
33. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Michnick S; Roustan JL; Remize F; Barre P; Dequin S Yeast; 1997 Jul; 13(9):783-93. PubMed ID: 9234667 [TBL] [Abstract][Full Text] [Related]
34. Optimization of ethanol production from starch by an amylolytic nuclear petite Saccharomyces cerevisiae strain. Toksoy Oner E Yeast; 2006 Sep; 23(12):849-56. PubMed ID: 17001624 [TBL] [Abstract][Full Text] [Related]
35. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. Bai FW; Chen LJ; Zhang Z; Anderson WA; Moo-Young M J Biotechnol; 2004 Jun; 110(3):287-93. PubMed ID: 15163519 [TBL] [Abstract][Full Text] [Related]
36. Control of yeast fed-batch process through regulation of extracellular ethanol concentration. Cannizzaro C; Valentinotti S; von Stockar U Bioprocess Biosyst Eng; 2004 Dec; 26(6):377-83. PubMed ID: 15597198 [TBL] [Abstract][Full Text] [Related]
37. Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: auxo-accelerostat study. Kasemets K; Nisamedtinov I; Laht TM; Abner K; Paalme T Antonie Van Leeuwenhoek; 2007 Jul; 92(1):109-28. PubMed ID: 17268890 [TBL] [Abstract][Full Text] [Related]
38. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055 [TBL] [Abstract][Full Text] [Related]
39. The role of acetaldehyde and glycerol in the adaptation to ethanol stress of Saccharomyces cerevisiae and other yeasts. Vriesekoop F; Haass C; Pamment NB FEMS Yeast Res; 2009 May; 9(3):365-71. PubMed ID: 19416102 [TBL] [Abstract][Full Text] [Related]
40. Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Roca C; Olsson L Appl Microbiol Biotechnol; 2003 Jan; 60(5):560-3. PubMed ID: 12536256 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]