These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 125188)

  • 41. [Ion content, ion transport and membrane ATPase of erythrocytes in stored blood].
    Grobecker H; Piechowski U
    Z Klin Chem Klin Biochem; 1966 May; 4(3):126-30. PubMed ID: 4231194
    [No Abstract]   [Full Text] [Related]  

  • 42. Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts.
    Proverbio F; Hoffman JF
    J Gen Physiol; 1977 May; 69(5):605-32. PubMed ID: 140926
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular basis for active Na,K-transport by Na,K-ATPase from outer renal medulla.
    Jørgensen PL
    Biochem Soc Symp; 1985; 50():59-79. PubMed ID: 2428372
    [TBL] [Abstract][Full Text] [Related]  

  • 44. THE INCORPORATION OF 32P FROM TRIPHOSPHATE INTO POLYPHOSPHOINOSITIDES (GAMMA-32P)ADENOSINE AND PHOSPHATIDIC ACID IN ERYTHROCYTE MEMBRANES.
    HOKIN LE; HOKIN MR
    Biochim Biophys Acta; 1964 Oct; 84():563-75. PubMed ID: 14250494
    [No Abstract]   [Full Text] [Related]  

  • 45. The sodium, potassium-pump.
    Skou JC
    Scand J Clin Lab Invest Suppl; 1986; 180():11-23. PubMed ID: 3012760
    [No Abstract]   [Full Text] [Related]  

  • 46. Na-Na exchange by the Na pump requires ATP as well as ADP [proceedings].
    Cavieres JD; Glynn IM
    J Physiol; 1976 Dec; 263(1):214P-215P. PubMed ID: 1011155
    [No Abstract]   [Full Text] [Related]  

  • 47. Active transport of cations across biological membranes.
    Stein WD; Eilam Y; Lieb WR
    Ann N Y Acad Sci; 1974 Feb; 227():328-36. PubMed ID: 4275122
    [No Abstract]   [Full Text] [Related]  

  • 48. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP.
    García JJ; Gómez-Puyou A; Maldonado E; Tuena De Gómez-Puyou M
    Eur J Biochem; 1997 Oct; 249(2):622-9. PubMed ID: 9370375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Active calcium transport through biological membranes].
    Tashmukhamedov BA
    Ukr Biokhim Zh; 1971; 43(1):78-87. PubMed ID: 4253959
    [No Abstract]   [Full Text] [Related]  

  • 50. Suramin: a potent ATPase inhibitor which acts on the inside surface of the sodium pump.
    Fortes PA; Ellory JC; Lew VL
    Biochim Biophys Acta; 1973 Aug; 318(2):262-72. PubMed ID: 4355468
    [No Abstract]   [Full Text] [Related]  

  • 51. [Ion-dependent conformational transitions in transport ATPase membrane preparations].
    Raĭkhman LM; Moshkovskiĭ IuS
    Mol Biol; 1974; 8(5):768-74. PubMed ID: 4283379
    [No Abstract]   [Full Text] [Related]  

  • 52. Demonstration of two ATPases in human erythrocyte membranes.
    Gröschel-Stewart U
    Experientia; 1969 Jun; 25(6):601-2. PubMed ID: 4240598
    [No Abstract]   [Full Text] [Related]  

  • 53. Some properties of the ADP-ATP exchange reaction in turtle bladder microsomes.
    Shamoo AE; Gentile DE; Brodsky WA
    Biochim Biophys Acta; 1970 Jun; 203(3):495-505. PubMed ID: 4257136
    [No Abstract]   [Full Text] [Related]  

  • 54. Relationship between intracellular ATP and the sodium pump activity in dog renal tubules.
    Ammann H; Noël J; Boulanger Y; Vinay P
    Can J Physiol Pharmacol; 1990 Jan; 68(1):57-67. PubMed ID: 2158385
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Participation of cytidine triphosphate in sodium-dependent phosphorylation, transphosphorylation, and hydrolysis: evidence for two hydrolytic sites in sodium ion-plus potassium ion-dependent adenosine triphosphatase.
    Banerjee SP
    Ann N Y Acad Sci; 1974; 242(0):139-48. PubMed ID: 4279584
    [No Abstract]   [Full Text] [Related]  

  • 56. A new member of the ATPase family.
    Czerwinski A; Gitelman HJ; Welt LG
    Am J Physiol; 1967 Sep; 213(3):786-92. PubMed ID: 4227008
    [No Abstract]   [Full Text] [Related]  

  • 57. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex.
    Goldfarb PS; Rodnight R
    Biochem J; 1970 Nov; 120(1):15-24. PubMed ID: 4250237
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Post-tetanic hyperpolarization, sodium-potassium-activated adenosine triphosphatase and high energy phosphate levels in garfish olfactory nerve.
    McDougal DB; Osborn LA
    J Physiol; 1976 Mar; 256(1):41-60. PubMed ID: 132526
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Studies on the partial reactions catalyzed by the (Na++K+)-activated ATPase. 3. Relation of K+-dependent p-nitrophenylphosphatase to Na+ transport in red cell ghosts.
    Askari A; Rao SN
    Biochim Biophys Acta; 1971 Jul; 241(1):75-88. PubMed ID: 4331046
    [No Abstract]   [Full Text] [Related]  

  • 60. A Na+K+-activated Mg2+-dependent ATPase released from Proteus L-form membrane.
    Monteil H; Schoun J; Guinard M
    Eur J Biochem; 1974 Feb; 41(3):525-32. PubMed ID: 4274111
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.