These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12518801)

  • 1. In vitro study of drug-loaded bioresorbable films and support structures.
    Zilberman M; Eberhart RC; Schwade ND
    J Biomater Sci Polym Ed; 2002; 13(11):1221-40. PubMed ID: 12518801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structured drug-loaded bioresorbable films for support structures.
    Zilberman M; Schwade ND; Meidell RS; Eberhart RC
    J Biomater Sci Polym Ed; 2001; 12(8):875-92. PubMed ID: 11718482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dexamethasone loaded bioresorbable films used in medical support devices: structure, degradation, crystallinity and drug release.
    Zilberman M
    Acta Biomater; 2005 Nov; 1(6):615-24. PubMed ID: 16701842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-loaded bioresorbable fibers and expandable stents: Mechanical properties and protein release.
    Zilberman M; Schwade ND; Eberhart RC
    J Biomed Mater Res B Appl Biomater; 2004 Apr; 69(1):1-10. PubMed ID: 15015203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents.
    Zilberman M; Nelson KD; Eberhart RC
    J Biomed Mater Res B Appl Biomater; 2005 Aug; 74(2):792-9. PubMed ID: 15991233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties and in vitro degradation of bioresorbable knitted stents.
    Nuutinen JP; Välimaa T; Clerc C; Törmälä P
    J Biomater Sci Polym Ed; 2002; 13(12):1313-23. PubMed ID: 12555898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structured drug-eluting bioresorbable films: microstructure and release profile.
    Zilberman M; Shifrovitch Y; Aviv M; Hershkovitz M
    J Biomater Appl; 2009 Mar; 23(5):385-406. PubMed ID: 18632769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New tubular bioabsorbable knitted airway stent: biocompatibility and mechanical strength.
    Saito Y; Minami K; Kobayashi M; Nakao Y; Omiya H; Imamura H; Sakaida N; Okamura A
    J Thorac Cardiovasc Surg; 2002 Jan; 123(1):161-7. PubMed ID: 11782770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model.
    Lincoff AM; Furst JG; Ellis SG; Tuch RJ; Topol EJ
    J Am Coll Cardiol; 1997 Mar; 29(4):808-16. PubMed ID: 9091528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) and their potential as biodegradable stent coatings.
    Westedt U; Wittmar M; Hellwig M; Hanefeld P; Greiner A; Schaper AK; Kissel T
    J Control Release; 2006 Mar; 111(1-2):235-46. PubMed ID: 16466824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro hemocompatibility studies of drug-loaded poly-(L-lactic acid) fibers.
    Nguyen KT; Su SH; Sheng A; Wawro D; Schwade ND; Brouse CF; Greilich PE; Tang L; Eberhart RC
    Biomaterials; 2003 Dec; 24(28):5191-201. PubMed ID: 14568436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel bioresorbable stent coating for drug release in congenital heart disease applications.
    Goodfriend AC; Welch TR; Barker G; Ginther R; Riegel MS; Reddy SV; Wang J; Nugent A; Forbess J
    J Biomed Mater Res A; 2015 May; 103(5):1761-70. PubMed ID: 25196819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and mechanical degradation behaviour of semi-crystalline PLLA for bioresorbable stent applications.
    Polak-Kraśna K; Abaei AR; Shirazi RN; Parle E; Carroll O; Ronan W; Vaughan TJ
    J Mech Behav Biomed Mater; 2021 Jun; 118():104409. PubMed ID: 33836301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of intrinsic characteristics on mechanical properties of poly(l-lactic acid) bioresorbable vascular stents.
    Hua R; Tian Y; Cheng J; Wu G; Jiang W; Ni Z; Zhao G
    Med Eng Phys; 2020 Jul; 81():118-124. PubMed ID: 32482508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curcumin impregnation improves the mechanical properties and reduces the inflammatory response associated with poly(L-lactic acid) fiber.
    Su SH; Nguyen KT; Satasiya P; Greilich PE; Tang L; Eberhart RC
    J Biomater Sci Polym Ed; 2005; 16(3):353-70. PubMed ID: 15850289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro.
    Meng B; Wang J; Zhu N; Meng QY; Cui FZ; Xu YX
    J Mater Sci Mater Med; 2006 Jul; 17(7):611-7. PubMed ID: 16770545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key Factors of Mechanical Strength and Toughness in Oriented Poly(l-lactic acid) Monofilaments for a Bioresorbable Self-Expanding Stent.
    Wang B; Liu M; Liu J; Tian Y; Liu W; Wu G; Cheng J; Zhang Y; Zhao G; Ni Z
    Langmuir; 2022 Nov; 38(44):13477-13487. PubMed ID: 36306177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analysis of the radial mechanical performance of PLLA coronary artery stents.
    Pauck RG; Reddy BD
    Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite material stent comprising metallic wire and polylactic acid fibers, and its mechanical strength and retrievability.
    Shomura Y; Tanigawa N; Tokuda T; Kariya S; Kojima H; Komemushi A; Sawada S
    Acta Radiol; 2009 May; 50(4):355-9. PubMed ID: 19306137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular responses of vascular smooth muscle cells to paclitaxel-eluting bioresorbable stent materials.
    Nguyen KT; Shaikh N; Wawro D; Zhang S; Schwade ND; Eberhart RC; Tang L
    J Biomed Mater Res A; 2004 Jun; 69(3):513-24. PubMed ID: 15127398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.