BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 12519014)

  • 1. Interacting roles of myofibroblasts, apoptosis and fibrogenic growth factors in the pathogenesis of renal tubulo-interstitial fibrosis.
    Lane A; Johnson DW; Pat B; Winterford C; Endre Z; Wei M; Gobe GC
    Growth Factors; 2002 Sep; 20(3):109-19. PubMed ID: 12519014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transforming growth factor-beta(1) and myofibroblasts: a potential pathway towards renal scarring in human glomerular disease.
    Goumenos DS; Tsamandas AC; Oldroyd S; Sotsiou F; Tsakas S; Petropoulou C; Bonikos D; El Nahas AM; Vlachojannis JG
    Nephron; 2001 Mar; 87(3):240-8. PubMed ID: 11287759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis.
    Wang SN; Hirschberg R
    Am J Physiol Renal Physiol; 2000 Apr; 278(4):F554-60. PubMed ID: 10751215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apoptosis and myofibroblast expression in human glomerular disease: a possible link with transforming growth factor-beta-1.
    Goumenos DS; Tsamandas AC; El Nahas AM; Thomas G; Tsakas S; Sotsiou F; Bonikos DS; Vlachojannis JG
    Nephron; 2002 Oct; 92(2):287-96. PubMed ID: 12218305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myofibroblasts and the progression of crescentic glomerulonephritis.
    Goumenos D; Tsomi K; Iatrou C; Oldroyd S; Sungur A; Papaioannides D; Moustakas G; Ziroyannis P; Mountokalakis T; El Nahas AM
    Nephrol Dial Transplant; 1998 Jul; 13(7):1652-61. PubMed ID: 9681707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myofibroblast phenotypes expression in experimental renal scarring.
    Muchaneta-Kubara EC; el Nahas AM
    Nephrol Dial Transplant; 1997 May; 12(5):904-15. PubMed ID: 9175042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between vimentin expressing renal tubules and interstitial fibrosis in chronic progressive nephropathy in aged rats.
    Nakatsuji S; Yamate J; Sakuma S
    Virchows Arch; 1998 Oct; 433(4):359-67. PubMed ID: 9808438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential immunoexpressions of cytoskeletons in renal epithelial and interstitial cells in rat and canine fibrotic kidneys, and in kidney-related cell lines under fibrogenic stimuli.
    Yamate J; Kuribayashi M; Kuwamura M; Kotani T; Ogihara K
    Exp Toxicol Pathol; 2005 Nov; 57(2):135-47. PubMed ID: 16325524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apoptosis of tubulointerstitial chronic inflammatory cells in progressive renal fibrosis after cancer therapies.
    Yang T; Vesey DA; Johnson DW; Wei MQ; Gobe GC
    Transl Res; 2007 Jul; 150(1):40-50. PubMed ID: 17585862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proximal tubular cells promote fibrogenesis by TGF-beta1-mediated induction of peritubular myofibroblasts.
    Abbate M; Zoja C; Rottoli D; Corna D; Tomasoni S; Remuzzi G
    Kidney Int; 2002 Jun; 61(6):2066-77. PubMed ID: 12028447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunohistochemical analysis of macrophages, myofibroblasts, and transforming growth factor-beta localization during rat renal interstitial fibrosis following long-term unilateral ureteral obstruction.
    Yamate J; Okado A; Kuwamura M; Tsukamoto Y; Ohashi F; Kiso Y; Nakatsuji S; Kotani T; Sakuma S; Lamarre J
    Toxicol Pathol; 1998; 26(6):793-801. PubMed ID: 9864097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monocytes may promote myofibroblast accumulation and apoptosis in Alport renal fibrosis.
    Rodgers KD; Rao V; Meehan DT; Fager N; Gotwals P; Ryan ST; Koteliansky V; Nemori R; Cosgrove D
    Kidney Int; 2003 Apr; 63(4):1338-55. PubMed ID: 12631350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connective tissue growth factor expression in the rat remnant kidney model and association with tubular epithelial cells undergoing transdifferentiation.
    Frazier KS; Paredes A; Dube P; Styer E
    Vet Pathol; 2000 Jul; 37(4):328-35. PubMed ID: 10896394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathogenesis of Fabry nephropathy: The pathways leading to fibrosis.
    Rozenfeld PA; de Los Angeles Bolla M; Quieto P; Pisani A; Feriozzi S; Neuman P; Bondar C
    Mol Genet Metab; 2020 Feb; 129(2):132-141. PubMed ID: 31718986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paracrine stimulation of human renal fibroblasts by proximal tubule cells.
    Johnson DW; Saunders HJ; Baxter RC; Field MJ; Pollock CA
    Kidney Int; 1998 Sep; 54(3):747-57. PubMed ID: 9734599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation.
    Bijkerk R; de Bruin RG; van Solingen C; van Gils JM; Duijs JM; van der Veer EP; Rabelink TJ; Humphreys BD; van Zonneveld AJ
    Kidney Int; 2016 Jun; 89(6):1268-80. PubMed ID: 27165825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy.
    Wang SN; LaPage J; Hirschberg R
    Kidney Int; 2000 Mar; 57(3):1002-14. PubMed ID: 10720953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming growth factor-β1 short hairpin RNA inhibits renal allograft fibrosis.
    Yin ZK; Wu XH; Xia YG; Luo CL
    Chin Med J (Engl); 2011 Mar; 124(5):655-63. PubMed ID: 21518553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction.
    Yang J; Dai C; Liu Y
    Am J Pathol; 2003 Aug; 163(2):621-32. PubMed ID: 12875981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular apoptosis and proliferation in experimental renal fibrosis.
    Thomas GL; Yang B; Wagner BE; Savill J; El Nahas AM
    Nephrol Dial Transplant; 1998 Sep; 13(9):2216-26. PubMed ID: 9761500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.