These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 12519772)
1. The 1.92-A structure of Streptomyces coelicolor A3(2) CYP154C1. A new monooxygenase that functionalizes macrolide ring systems. Podust LM; Kim Y; Arase M; Neely BA; Beck BJ; Bach H; Sherman DH; Lamb DC; Kelly SL; Waterman MR J Biol Chem; 2003 Apr; 278(14):12214-21. PubMed ID: 12519772 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the 1.85 A structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways. Podust LM; Bach H; Kim Y; Lamb DC; Arase M; Sherman DH; Kelly SL; Waterman MR Protein Sci; 2004 Jan; 13(1):255-68. PubMed ID: 14691240 [TBL] [Abstract][Full Text] [Related]
3. The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. Sherman DH; Li S; Yermalitskaya LV; Kim Y; Smith JA; Waterman MR; Podust LM J Biol Chem; 2006 Sep; 281(36):26289-97. PubMed ID: 16825192 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the macrolide P-450 hydroxylase from Streptomyces venezuelae which converts narbomycin to picromycin. Betlach MC; Kealey JT; Ashley GW; McDaniel R Biochemistry; 1998 Oct; 37(42):14937-42. PubMed ID: 9778370 [TBL] [Abstract][Full Text] [Related]
5. Exploring the molecular basis for substrate specificity in homologous macrolide biosynthetic cytochromes P450. DeMars MD; Samora NL; Yang S; Garcia-Borràs M; Sanders JN; Houk KN; Podust LM; Sherman DH J Biol Chem; 2019 Nov; 294(44):15947-15961. PubMed ID: 31488542 [TBL] [Abstract][Full Text] [Related]
6. Substrate recognition by the multifunctional cytochrome P450 MycG in mycinamicin hydroxylation and epoxidation reactions. Li S; Tietz DR; Rutaganira FU; Kells PM; Anzai Y; Kato F; Pochapsky TC; Sherman DH; Podust LM J Biol Chem; 2012 Nov; 287(45):37880-90. PubMed ID: 22952225 [TBL] [Abstract][Full Text] [Related]
7. Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis. Xu LH; Fushinobu S; Takamatsu S; Wakagi T; Ikeda H; Shoun H J Biol Chem; 2010 May; 285(22):16844-53. PubMed ID: 20375018 [TBL] [Abstract][Full Text] [Related]
8. The structure of ActVA-Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis. Sciara G; Kendrew SG; Miele AE; Marsh NG; Federici L; Malatesta F; Schimperna G; Savino C; Vallone B EMBO J; 2003 Jan; 22(2):205-15. PubMed ID: 12514126 [TBL] [Abstract][Full Text] [Related]
9. Neopikromycin and novapikromycin from the pikromycin biosynthetic pathway of Streptomyces venezuelae. Lee SK; Park JW; Kim JW; Jung WS; Park SR; Choi CY; Kim ES; Kim BS; Ahn JS; Sherman DH; Yoon YJ J Nat Prod; 2006 May; 69(5):847-9. PubMed ID: 16724858 [TBL] [Abstract][Full Text] [Related]
11. Identification and characterization of gerPI and gerPII involved in epoxidation and hydroxylation of dihydrochalcolactone in Streptomyces species KCTC 0041BP. Malla S; Thuy TT; Oh TJ; Sohng JK Arch Microbiol; 2011 Feb; 193(2):95-103. PubMed ID: 21069297 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of cytochrome P450 CYP105N1 from Streptomyces coelicolor, an oxidase in the coelibactin siderophore biosynthetic pathway. Lim YR; Hong MK; Kim JK; Doan TT; Kim DH; Yun CH; Chun YJ; Kang LW; Kim D Arch Biochem Biophys; 2012 Dec; 528(2):111-7. PubMed ID: 23000034 [TBL] [Abstract][Full Text] [Related]
13. P450BM-3; a tale of two domains--or is it three? Peterson JA; Sevrioukova I; Truan G; Graham-Lorence SE Steroids; 1997 Jan; 62(1):117-23. PubMed ID: 9029725 [TBL] [Abstract][Full Text] [Related]
14. Electron transport pathway for a Streptomyces cytochrome P450: cytochrome P450 105D5-catalyzed fatty acid hydroxylation in Streptomyces coelicolor A3(2). Chun YJ; Shimada T; Sanchez-Ponce R; Martin MV; Lei L; Zhao B; Kelly SL; Waterman MR; Lamb DC; Guengerich FP J Biol Chem; 2007 Jun; 282(24):17486-500. PubMed ID: 17446171 [TBL] [Abstract][Full Text] [Related]
15. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the polyene macrolide P450 epoxidase from Streptomyces natalensis that converts de-epoxypimaricin into pimaricin. Mendes MV; Antón N; Martín JF; Aparicio JF Biochem J; 2005 Feb; 386(Pt 1):57-62. PubMed ID: 15228385 [TBL] [Abstract][Full Text] [Related]
17. Structural analysis of P450 AmphL from Streptomyces nodosus provides insights into substrate selectivity of polyene macrolide antibiotic biosynthetic P450s. Amaya JA; Lamb DC; Kelly SL; Caffrey P; Murarka VC; Poulos TL J Biol Chem; 2022 Apr; 298(4):101746. PubMed ID: 35189143 [TBL] [Abstract][Full Text] [Related]
18. An evaluation of molecular models of the cytochrome P450 Streptomyces griseolus enzymes P450SU1 and P450SU2. Braatz JA; Bass MB; Ornstein RL J Comput Aided Mol Des; 1994 Oct; 8(5):607-22. PubMed ID: 7876903 [TBL] [Abstract][Full Text] [Related]
19. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Xue Y; Wilson D; Zhao L; Liu Hw; Sherman DH Chem Biol; 1998 Nov; 5(11):661-7. PubMed ID: 9831532 [TBL] [Abstract][Full Text] [Related]
20. Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium. Jóźwik IK; Kiss FM; Gricman Ł; Abdulmughni A; Brill E; Zapp J; Pleiss J; Bernhardt R; Thunnissen AW FEBS J; 2016 Nov; 283(22):4128-4148. PubMed ID: 27686671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]